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‘ _.—-"7A naonlinear controller is designed for a {full size
= submarine using the LGG/LTR procedure. Linear models of the
- submarine are developed at four different speeds and then
analyzed using the method of modal analysis. The linear
models are then augmented with integral control and a Kalman
Filter transfer function is designed using some tools for
loop shaping. The Loop Transfer Recoverthechnique is then
applied to recover the Kalman Filter loop shapes. A
polynomial data fit is performed on the resulting
compensators to praduce a nonlinear controller. Both the
linear and the nonlinear controllers are extensively tested
using a full nonlinear model of the submarine. .-
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INTRODUCTION AND SUMMARY

1.1 Background

The technology for building multivariable control systems
has advanced in the last several years and there is a very
definite need for complex design examples to help engineers
understand and further develaop this power ful design

methodology.

Multi~input, multi-ocutput (MIMO) control system design is
much more complex than either classical control system

design or single-input, single-output (SIS0) control system

design. The engineer must use and manipulate the singular

: values of the loop transfer function matrix of the plant to
: determine the performance of the controller and this concept
i of singular values as a measure is at present relatively
unknown to most control engineers. Therefore, it is
necessary to apply the MIMO methodology to practical

examples in order to display the power of this technique and




also to point out any shortcomings.

To date, non—~trivial examples of MIMO design using the
Linear GQuadratic Gaussian procedure with Loop Transfer
Recovery (LQG/LTR) are few in number (see [1] [2] for recent
examples). This is in part due to the LGG/LTR technique
having been only recently developed [3] (4] [51, and partly
due to the significant effort required to develop and
linearize a MIMO model, design the controller, and test the

resulting design.

Previous controller designs for submarines have used the
SISO design technique or classical design techniques (&1
£7]. This thesis is believed to be the first (unclassified)
example of a MIMO design on a full-size submarine. The
LAG/LTR design methodology is used because it incorporates
the dynamics of the plant (the submarine) into the
compensator and thereby provides a vehicle for capturing the
dynamics of the submarine at various speeds. This
information can then be utilized to produce a nonlinear
dynamic compensator that varies as some sensed parameter
changes (gain schaduling), providing adaptive-like nonlinear
control of the submarine over a variety of speed conditions
and simultanecus maneuvers. In fact, the linearized models
of the submarine were selected so as to emphasize the

cross—coupling of the longitudinal and lateral dynamics.
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1.2 Cantributions of the Thesis

The main contribution of this thesis is to illustrate the
hi multivariable LGG/LTR feedback control system design

methodology for a maneuvering submarine, and, further, to T

demonstrate the utilization of gain scheduling to construct

a nonlinear controller. The reader should not interpret the

%! resulting controller design to be a final product, and

further research is needed to use such controllers for all

diverse submarine maneuvers.

The first stage of the design process is to achieve as
complete an understanding of the submarine model as is
possible. To accomplish this, the submarine model is
linearized about an unconventional operating trajectory so
as to capture 1longitudinal/lateral interactions. The

resulting linear representation is decomposed into its modal

representation. The modal matrices are then graphically
displayed to visualize the dynamic behavior of the submarine
and further manipulated to determine whether or not the
required observability/contrallability requirements of the
LEGG/LTR design process are met under various choices of

cantrol and output variables.

- 19 - ©
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The controller design is based on the LGG/LTR methodology
formulated by Doyle and Stein [3] [4], and refined by Athans

ta].

The design effort concentrates on the frequency domain
properties of the state space representations of the
submarine model. Methods of shaping the singular values of
the open loop plant transfer matrix are developed that
guarantee the identical behavior of the singular values at
both the high and 1low ends of the frequency spectrum.
Scaling of the output variables is utilized to produce the

desired loop shapes at frequencies near crossaver.

The state variable used for gain scheduling was taken to
be forward velocity in the body reference coordinate
system. Although gain scheduling may also be desired based
on roll angle (again in the body reference coordinate
system), this would necessarily be in addition to the gain
scheduling employed using forward velacity. Time domain
plots of nonlinear simulations of the compensated system
designed at a particular speed are presented to show the

validity of that choice.

Gain scheduling of the compensator designs is accomplished
by performing a least squares fit on the individual
compensator parameters. An algaorithm for producing the

coefficients resulting from a quadratic polynomial least




squares fit to matrices is presented.

Finally, time domain plots of the gain scheduled LQG/LTR
compensator being applied to the nonlinear submarine model
are presented as a means of illustrating the resulting

nonlinear design.

1.3 Outline of the Thesis

Chapter 2 describes the process used to model the
submarine and the methods used to produce a linear state
space representation. The computer implementation of the
submarine nonlinear and linear maodels is brieffy described.
The chapter ends with a discussion of the reasoning used to
select the output variables and presents the performance

requirements imposed on the controller designs.

In Chapter 3, the eigenstructure of the linear model is
studied using modal decomposition. Pole-zero information
and singular value plots are also utilized to further

display the structure of the open loop dynamics.

Chapter 4 contains the linear portion of the design,
following the LGG/LTR methodology. Although the reader is
assumed to be familiar with the work of Doyle and Stein (3],

the notation being used is briefly summarized. Singular

- 12 -
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value plots of the open loop submarine model plus

compensator are presented for each design.

The gain scheduling method for the compensator parameters
is presented in Chapter 5. Results of various nonlinear
simulations are included to display the performance,

focusing upon simultaneous evasive maneuvers.

Chapter & contains a summary, conclusions, and some

proposed directions for further research.
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L Chapter 2 -

MATHEMATICAL MODEL OF THE SUBMARINE

2.1 Introduction

The submarine model used in this thesis is that
implemented at the Charles Stark Draper Laboratory (CSDL)
both as a real-time simulation facility and an analytical
madel generating facility. Details of the latter are given

in [91.

This chapter discusses the equations used to model a
submarine and presents a brief history of the implementation

of the submarine model at the CSDL.

The software in its present form [10] provides the control
system designer with several useful tools. The manner in
which these tools are used to produce and validate the
required linear models for a gain scheduling LQG/LTR
controller is detailed, as well as the reasoning used to

select the output variables.

- 14 -




The chapter ends with a section on performance
requirements to be imposed on the controller design, thus
setting the stage for analysis of the model in chapter 3 and

finally the actual design of the controller in chapter 4.

2.2 Modeling of the Submarine

The generic model from which most submarine models are
derived is that given in the original Naval Ship Research
and Development Center (NSRDC) Report 251@ [(11] entitled
“Standard Equations of Motion for Submarine Simulation."
The model used in this thesis is believed to be an
improvement of the ‘standard model’ in that it includes the
crossflow drag and vortex contribution terms for the five
degrees of freedom (the straight ahead x-axis force is not

included).

To establish the notation for describing the submarine
motion, a brief description of the nonlinear equations of

motion is presented.

Two reference frames are used in deriving the equations of
motion for a submarine - the body reference frame and the
earth reference frame. The former is used because

hydrodynamic forces and inertias are more readily computed

- 15 -




in the submarine reference frame. For purposes of control
and stability determination, we are also concerned with the
motion of the submarine in the earth reference frame. The
relationship of the motion of the submarine batween these
two reference frames is described by Euler 's angles [12] v,
0, and é:

¥ (Yaw) - rotation about the z axis

O (Pitch) - rotation about the y axis

¢ (Roll) - rotation about the x axis

where x, Yy, and z represent the body reference frame as it
changes according to the indicated rotations and in the
order given. The orientation of the submarine in its own

reference frame is depicted in figure 2.1.

1 &

Figure 2.1 - Submarine Baody Reference Frame Axes

- 1& -




The state vector for the submarine must therefore include 4

B

the six degrees of freedom in its own reference frame, the

three Euler angles, and any desired position variables to

locate the submarine with respect to some earth frame o]
reference point. For the purposes of this thesis, only the
depth position variable is used and the state vector for the

submarine model contains the states summarized in table 2.1. o

Table 2.1. Submarine State Variables

u = xl(t) - forward velocity in feet/sec

v =

x

(t) - lateral velocity in feet/sec

.
z
"
X
-~
ir
~
|

vertical velocity in feet/sec

(t) — roll rate in radians/sec

v
N
X

D
L]
X

(t) - pitch rate in radians/sec

-
i
X

(t) - yaw rate in radians/sec

"
X
9 0 N O U &2 WON

(t) - roll angle in radians

(t) - pitch angle in radians

< 0 ¢
]
X

= uo(t) - yaw angle in radians

xlﬂ(t) -~ depth in feet (positive downward)

Note: u, v, w, ¢, and & are in the body
reference frame. All others are in the inertial
reference frame.

It should be noted that the Euler angles only

approximately describe the submarine roll, pitch, and yaw

angles in the earth reference frame, with the approximation

becoming more accurate as the magnitude of the Euler angles

A otk oed
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approaches zero. This is due to the fact that, in
transforming the coordinates from earth reference to body
reference, the Euler angle rotations are applied

sequentially, in the specific order ¥, 6, and finally 4.

Using the state variables of table 2.1, the nonlinear
equations of motion are derived using force and moment
balances in the submarine rotating coordinate system. The
forces and moments due to the submarine motion must be equal
to the total forces and moments exerted by:

1. Hydrodynamic pressures

2. Control forces and moments

3. Propulsion or tow forces

4. Any other forces and moments

The reader is referred to the NSRDC Report 2519 [12) for
details of the derivation of the nonlinear equations of
motion and a description of the hydrodynamic coefficients

describing the submarine geometry and control surfaces.

The submarine model used in this thesis has three control
variables - rudders, stern planes, and fairwater planes (see
figure 2.2). The propeller is constrained to turn at a
constant rpm to reflect current operating procedures. The

control surfaces on the submarine are locked together in the




sense that the port stern plane deflects the same as the
starboard stern plane and similarly for the rudders and
fairwater planes. Table 2.2 summarizes the nomenclature for
the control surfaces.
Table 2.2. Submarine Control Surfaces
ds = u,(t) - stern planes deflection in radians

1

db = u, (t) - fairwater planes deflection in radians

2

dr = us(t) - rudder deflection in radians

2.3 Implementation of the Model

Initially, the CSDL adapted model was implemented in the
simulation lab at CSDL, resulting in a real time
simulation. A Digital Equipment Corporation VAX 11-780
computer and a Computervision graphics display workstation
are used to provide both computer print-out and visual
display of submarine motion during various maneuvers.
Joystick control is used to input commands to the control
surfaces, with the state of the submarine being depicted in
real time against an x-y grid on the graphics display. The
display also includes simulated instrumentation to indicate
the current status of the control surfaces and other

selected parameters.

For the purposes of analytical studies geared to

- 19 -
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controller design, the same set of nonlinear equations was

later implemented on the IBM time sharing computer at CSDL.

Considerable enhancement was added to the program during the

transfer to aid the control system designer in his task. At

present, capabilities of the software include:

1.

3.

4.

S.

Addition of a user—friendly executive routine to allow
modification of parameters and selection of options
for a particular simulation run. This routine then
submits the tailored program for background

execution.

The option of calculating A and B matrices that
describe the linearization of the submarine about a
particular nominal point, in the form

X(t) = A x(t) + B u(t).

The options of setting control surfaces to fixed
values, varying the control surfaces over time
according to values in a data file, calculation of the
controls using full state feedback, or calculation of

the controls using a LQG/LTR derived compensation.

Selection of computer print-out or plots (or both) of
the state variables over time of either the nonlinear

model or the linearized model.

The capability of searching for a local equilibrium

- 28 -
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point for the nonlinear model that is close to a

desired nominal point.

To closely simulate typical operating profiles of an
actual submarine, the propeller rpm is kept constant during

a particular run.

2.4 Generation of the Linear Models

To perform gain scheduling of compensator designs over a
large speed range requires that several linear models of the
submarine be developed. Extensive analysis of the submarine
open loop dynamics, however, requires only a single model
that captures most of the dynamic modes present in the
submarine. As we remarked before, this linearized model was
abtained to capture significant longitudinal-lateral

interactions in simul taneous maneuvers.

The submarine modeled in this thesis (figure 2.2) is
approximately 400 feet 1long, has the conventional stern
configuration (stern control surfaces are in the shape of a
cross), and planes mounted on the sail (fairwater planes).

The lack of differential control for the control surfaces

and the conventional stern configuration prevent any direct

control over roll or roll rate of the submarine. For this

- 21 -
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reason, the initial linear model should be such that roll
does not dominate the submarine behavior nor is it absent
either. The nominal point usaed for analysis uses a forward
velocity of 28 knots, 5 degrees of rudder, and one degree on
each of the planes. This places the submarine in a diving
turn with the trajectory that of a helix. Dther state
variables are as determined by an equilibrium point search
with these initial conditions. Analysis of this model is

presented in the next chapter.

/‘/ Rudd(f ‘;C{f)

Farwater

P‘gnes
~— (db)

;

Steen Planes
L(.ls)

Figure 2.2. Submarine Control Surfaces

The control variables used in the controller designs are
ds, db, and dr (refer to table 2.2), the anqular deflections
of the three control surfaces. Deflection limits, as
imposaed by the software, are 4@ degrees for the stern planes

and rudder, and 20 degrees for the sail planes.

- 22 -
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Linearization of the nonlinear equations of maotion is
performed in a straightforward manner. A nominal point is
determined by integrating the nonlinear equations of motion
using a selected set of initial conditions, and an
equilibrium point is found that corresponds to minimum
accelerations for all state variables very near the steady
state values determined from the integration of the
equations of motion. For the nonlinear equations of motion,
there are 11 state variables since the control surface
deflections are also independent variables (¥ and 2z have no
effect on the integration). Thus an equilibrium point is
more precisely defined as a local minimum in 1l-space. The
values of the state variables at the equilibrium point then
describe a nominal point, about which high order terms can
be neglected. A set of linear differential equations can
then be produced, and the A and B matrices calculated, to

provide a state space description of the submarine.

For each nominal point thus determined, the resulting
linear model must be validated by perturbing the nominal
point to form a set of initial conditions, and then
comparing the results of integrating both the nonlinear and
the linear equations of motion. Provided the perturbations
are not too large, the nonlinear model will always return to
the equilibrium point values, while the linear model will

never reach steady state due to the non-zero farcing term

- 23 -
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imposed by the control surfaces. The comparison of the two
time histories, therefore, is limited to checking initial
derivatives, apparent natural frequencies, and the damping

rate.

Four linear models were developed, corresponding to
forward velocities of S5, 10, 20, and 25 knots. Contral
surface deflections were maintained at the values previously
mentioned. The models are designated SSRS, S10RS, S20RS5,
and S25RS, reflecting the speed and rudder deflection.
Figures 2.3 and 2.4 show results of the comparisons for
selected state variables for the S and 20 knot models. The
perturbations applied to the nominal point were identical in
all cases (see table 2.3). The comparisons show excellent
correlation between the linear and nonlinear madels and
sarve to validate the linear models. In particular, the
initial derivatives, the apparent natural frequency of
response, and the damping factors match almost exactly for
the linear and nonlinear models. Notice that the pitch rate
q(t) (figure- 2.3 (c) and (d) and 2.4 (c) and (d)) contains
two oscillatory modes, reflecting the cross coupling between
the rudders and stern planes when the submarine has a

non-zero roll angle. The roll angle for the 5 knot model is

-0.6 degrees and for the 20 knot model, -8 degrees. The A

and B matrices for the four models are presented in appendix

A.

- 24 -
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Table 2.3

Perturbations Applied to Nominal Points

State Variable Perturbation

2.0 ft/sec

0.2 ft/sec

- 0.02 ft/sec

- 0.00003 rad/sec
0.00003 rad/sec
2.203 rad/sec

- 0.5 degrees

- 1.0 degrees

+ +

[ B IV -1 - B K
+

2.5 Selection of the Qutput Variables

Selection of the output variables requires both a careful

study of the A and B matrices and determination of the

intent of the controller design. Three control variables.

are available so that three output variables can be chosen.
An autopilot could be designed, using the position variables
Y and 2z, or a rate controller could be designed, using the
rate variables u, v, w, p, Qq, or r. The attitude variables
¢ and © could be included in either design, depending on the
importance of these variables to the control system

designer.

The philosophy taken in this thesis is that a rate
controller be designed to control the submarine during

various maneuvers. As previously mentioned, the submarine
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model was linearized about a nonconventional operating point
to ensure that the cross coupling of the control surfaces
would be captured in the A and B matrices. The simplifying
assumption is made that the rate commands are presented in
the form of commands for w and r. If this assumption were
not made, the coordinate transformation effect of the Euler
angles would require a C matrix that was dependent on the
real time values of ¢, 6, and ¥, making the C matrix state
dependent. The third output variable is taken to be o, the
pitch angle, permitting the controller to accomplish depth
changes without imparting a pitch angle on the submarine.
The reader should note that w(t) is not an inertial
reference plane variable, and represents the true vertical
rate only when the submarine has zero pitch and roll
angles. Unfortunately, 2(t) is not available as a state

variable and this discrepancy must be tolerated.

With the output variables determined, and the A and B
matrices calculated, the Qtate space description of the
submarine model is now complete and takes the form

x(t) = Q x(t) + B u(t)
y(t) = C x(t), (2.1)

where y(t) = [ w(t) r(t) oe(t) 1°.
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2.6 Performance Requirements

ﬁ_ Two performance requirements are imposed on the controller

design. First, the maximum crossover frequency is limited
? to that of the submarine’s ability to respond and, second, ] J
the steady state error to step commands and step 1

disturbances is to be zero.

The maximum crossover frequency is based on the perturbed
response of the non-linear model. Inspection of figure 2.5
reveals an average settling time to within 90%Z of steady
state of 68-45 seconds, leading to a desired crossover

frequency of 0.10 radians/sec.

Inspection of the perturbed response of all four models

confirms an intuitive feeling that the settling time

increases as the submarine slows, requiring that a different

performance requirement be levied on each design.

The value of 0.10 rad/sec was declared to be the maximum
for the fastest model (25 knots), and a least squares curve
was fitted to the approximate time constants indicated by - 4
the plots. A linear it proved satisfactory, giving a
correlation coefficient of 0.9983 and, when transformed to

vield maximum crossover frequencies, produced the results in - -

- 31 -
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table 2.4.
Table 2.4

Crossover Frequencies for the Linear Models

Model Crossover fFrequency (rad/sec)
S Knot 9.05
10 Knot 2.06
20 Knot 9.08
25 Knot a.10

The zero steady state error requirement is met by placing
integrators in each of the three input channels. The
integrators are placed at the input to the plant because
this is where the error signal appears. The integrators
will then become a part of the compensator which is before
the plant in the feedback loop. As will be seen, the use of
integral control does naot prevent the maximum crossover

frequency specification from being met.

2.7 Summary

This chapter has described the origins of the submarine
model, briefly described the process of producing a linear
model, and presented the reasoning by which the output
variables were chosen. Additionally, performance
constraints were imposed on the controller design, thus

setting the stage for analysis of the open loop dynamics of

- 32 -
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# , the plant. ]

The next chapter will analyze the plant using the method

of modal decompaosition, and present data showing the

FI - eigenstructure of the submarine linear models.
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Chapter 3

ANALYSIS OF THE LINEAR MODEL

3.1 Introduction

In this chapter, the eigenstructure of the unaugmented 20
knot model will be investigated. As previously stated, the
20 knot model was the first to be developed and the only one

to have a detailed analysis performed on it.

For each of the other three linear models (at S, 10, and
25 knots) analysis was limited to inspection of the poles
and zeros, and producing singular value plots of the open
loop plant. Several consistency checks were also perfarmed

in an effort to avoid any numerical errors.

In the previous chapter, a state space description of the
submarine linear model was developed in the form

x(t) = A x(t) + B u(t) (3.1)

y(t) = C u(t). (3.2)

Prior to the actual analysis of the linear model, it will be

shown that the order of the model can be reduced, based on
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the zero entries present in the A and B matrices.

The eigenstructure of the 28 knot model is revealed by the
method of maodal analysis [131. This method involves the
implicit application of similarity transformations to the A
matrix, reducing it to a diaganal matrix whose entries are
the poles of the open loop svstem. The similarity
transformations provide a means of describing the state
space of the linear system in separate decoupled modes,
thereby vyielding information as to the caontrollability and

observability of the system.

This information, coupled with the pole-zero structure,
provides the basis and validity for the LAG/LTR designs of

the next chapter.

3.2 Reduction of the Model

Inspection of the A matrix for the 20 knot model (refer to
Appendix A, model S20RS) reveals zero entries in all
elements of the last two columns. This indicates that the
present values of the states ¥ and z can have no influence
an any other state. In other words, the present depth and
heading angle are irrelavent to the dynamic response of the

linear system.
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Zeros in the last two rows of B (Appendix A) further
indicate that the controls exert no direct influence on the

derivatives of Y and z.

Therefore, since the purpose of the controller is not
concerned with controlling either of these variables, they
are removed from the linear model. This is accomplished by
deleting the last two rows and columns of A, and the last

two rows of B, leaving an 8 state system.

3.3 The Natural Modes of the System .

A}
Determination of the natural modes of the 2@ knot linear

model is accomplished by diagonalizing the state space
description. For any linear dynamic system without input to
output direct coupling, we have

x(t) = A x(t) + B u(t) (3.3

y(t) = C x(¢t). (3.4)
Now define a new state vector z(t) by the relation

x(t) =T z2(t), (3.5
where T is an as yet unspeciiied, n x n, invertible matrix.
Then we have

T2(t) = AT z(t) + B uit) (3.4)

y(t) =C T z(t). (3.7)

Multiplying (3.46) on the left by I.l, we are left with

- 36 -
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) =T aTzctr + T B ut) (3.8

yt) =C T z(t). (3.9
I+ T is such that Ifl AT is diagonal, then the state vector

z(t) defines a new state space in which the modes are

decoupled and the entries of Ifl A T are the eigenvalues of
A. Let

A=1tarT. (3. 10
Then we have AT=TA. (3.11)

Now, represent the T matrix by its n column vectors Viv Yoo
ccay !n’ so0 that equation 3.11 can be expressed as
A v, = v.A. for i =1 ton (A= ([x_1). (3.12)
- =i =i"i i
Thus the columns of T are the eigenvectors of A and the

diagonalization is possible only when the A matrix bhas .

distinct eigenvalues.

The T matrix is called the modal matrix, with each column

of T describing the motion of the submarine along the
coordinate axes of the state vector components u, v, w, p,
qQ, r, $, and 6, for a particular mode. Since every possible
dynamic response of the submarine must cansist of a linear
combination of the decoupled modes, analysis of the columns
of T should provide the designer with very useful

information reqarding the submarine’s dynamic response.

Unfortunately, it is not a simple matter to visualize or

characterize motions in 8-space, especially when the
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magnitude of the motions are complex numbers expressed in

various units.

Analysis of the modes of the system is accomplished in two
steps. Firsf, the A and B matrices of the linear model are
transfaormed so that all angular components of the state
vector will have units of degrees or degrees/sec, as
appropriate. Details of the transformations applied are in

appendix Bl.

Secondly, the columns of the resulting modal matrix are
graphed in bar chart form by taking absolute values of each
element of the normalized column vectors. The loss of phase
information resulting from taking absolute values is

considered to be of less importance than the magnitude of

the motion along a particular state component.

The bar charts (figure 3.1) have a vertical scale of @ to
100%Z, reflecting the intent of displaying the relative
magni tude of the respbnse, and the eigenvalue corresponding
to a particular mode is noted below each graph. Note that
the two columns corresponding to a complex eigenvalue do not
produce unique modes when graphed in this manner. Complex,
or oscillatory modes are indicated by the labeling and the

presence of a complex eigenvalue.

It should be noted at this point that the modes shown
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Modal Response for model S20RS
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represent the natural modes of a linear model of a submarine
proceeding downward, in a port turn, at 20 knots. (Recall
that the nominal point specifies 5 degrees of rudder and 1
degree on the planes). Thus, although the bar charts
provide a convenient means of displaying the modes of a
linear system, in this particular case they are displaying
the modes of a system linearized about a nominal point that
serves to further obscure any physical interpretation. For
this reason, interpretation of the modes is limited to. the

following observations:

1. All eigenvalues, and hence the open loop poles, are in

the left half plane.

2. Mode 1 appears to represent the steady state response
of the submarine in a diving turn with constant

control surface deflections.

3. Modes 1, 2, and 3 are relatively lightly damped
compared to the other modes. They also have less roll
response and higher pitch response than the others,
and tend to indicate that the sail of the submarine
acts as a damper in side to side motions of the

submarine.

4., Modes S5 and 6 represent a nearly pure roll mode in

that almost the entire response is concentrated in

- 42 -




roll and roll rate. The inability to directly control
roll and roll rate is reflected in the oascillatory

behavior of these modes.

5. Comparison of the magnitudes for roll, pitch, and yaw
rates for modes 4 and B8 appears to indicate that as
more yaw rate is introduced, some of the roll respanse
is converted to pitch response. This is indicative of
the cross coupling that exists between the stern
planes and the rudder when the submarine is rolling

and turning at the same time.

The eigenvalues and modal matrices for all models are

contained in appendices B2 thraough BS.

3.4 Controllability and Observability

The LGG/LTR design methodolagy provides, under certain
conditions, guarantees to the control system designer
concerning gain and phase margins [8]. It should be noted
that the guarantees are not absolute, and exist only in the
sense that the LTR phase of the design process recovers a
loop shape that approaches that of the Kalman Filter design,

which does have the robustness guarantees.

The linear system must meet certain requirements, however,
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before the validity of the results are assured.
Specifically, the system must have no unstable modes which
are not controllable, and no unstable modes which are not
observable. If controllability and observability of the
system can be established, then the weaker conditions of

stabilizability and detectability are assured.

When a linear system can be diagonalized, as in the
present case, determination of controllability and
abservability becomes a very simple matter. Additionally,
even when a system does not meet the criteria for being
controllable or observable, the weaker conditions of
stabilizability and detectability are alsé readily

determined. .

Recall that the new state vector z (equation 3.5) defines
a non-physical state space in which the natural modes of the
system are decoupled. Thus a particular row of the Ifi B
matrix links the input vector u to a particular mode. Each
element in the row then links a particular input (in our
case a control surface) to a mode. Therefore, a zero entry

in the (i,j) position aof the I_l B matrix would indicate

that the ith mode is not controllable by the jth input.

Similarly, the matrix C T in equation 3.9 indicates

whether a particular mode is visible in the output.
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The 20 knot linear model has non—-zero entries in the I-
and C T matrices (refer to appendix B4) and is therefore
both controllable and aobservable, providing us with

assurances that the LGOG design method to be applied in the

next chapter will have no difficulties.

3.5 Poles, Zeros, and Singular Values

The poles of the open loop plant are the eigenvalues of
the A matrix presented in the previous section. As was
indicated, the plant is open loop stable, having all left

half plane poles.

Multivariable transmission zeros appearing in the right
half plane may present difficulties in an LBG/LTR design
[81. Fortunately, the 20 knot linear model has no
non-minimum phase zeros, nor do any of the other models

(refer to Appendix Bé).

The open loop poles for all four models are presented with
the modal information in appendices B2 through B35, and the

transmission zeros for each model in Appendix Bé.

Singular value plots of the open loop models are shown in
figure 3.2. It will be noticed that integral control is yet

to be added, and that satisfactory command following
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performance will indeed require the addition of integrators
in the 1loop transfer function matrix. The increased effect
of the control surfaces as speed increases can be seen by

noting the increased dc gain for each sucessive model.

As a further indication aof the effect of the control
surfaces on the outputs, the dc gains of the open loop
transfer function matrix for the 20 knot model are listed in
table 3.1. By reading across for each output variable, the
relative effect of the control surfaces can be determined.
The results are as expected, with the sail planes having the
most effect on w, the rudder on r, and the stern planes on
8. The gains for w are significantly higher than for the
other two outputs, indicating a need for scaling, which is

done in the next chapter.

Table 3.1. Input to Output Coupling

ds db dr
w i1 db 19 db 16 db
r ~36 db -49 db -18 db
e 19 db -8.1 db -3.0 db
- 48 -
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3.6 A Further Example of the Useful ness of Modal Anaiysis

This chapter on analysis of the linear model would be
incomplete without demonstrating the extreme usefulness of

modal analysis in detecting inconsistencies in a model.

The initial linear model of the submarine on the CSDL
computer contained an 11th state known as n. The purpose of
this state was to include the propulsion plant dynamics and

was defined as u(actual)/u{commanded).

Modal analysis of the model with »n included resulted in
eight modes essentially the same as those depicted in figure
3.1, and a ninth mode with all response concentrated in u
and n. Furthermore, this ninth mode had a near-zero
eigenvalue and zeros in the corresponding row of the Ifl B

matrix.

From the previous discussion of modal analysis, we can see
that this situation is indicative of an uncontrollable and
unstable mode, thus rendering the LQG design methodology
invalid. 1If, however, the near-zero eigenvalue is taken to
be the digital representation of a true zero eigenvalue, and
the reasoning is applied that the actual submarine must be

stable in forward velocity, then the facts imply an

- 49 -~
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inconsistency in the madel.

To further refine this conclusion, both the linear and the
nonlinear equations of motion were integrated over time,
using the scaled magnitudes of the eigenvector corresponding
to the unstable mode. The nonlinear plot decayed back to
the local equilibrium point whereas the linear plot
displayed an unforced response that remained at the

perturbed values.

This last information clearly indicated a dependency among
the states of the linear model, and the problem was then
quickly traced to the treatment of the propulsion plant as a
constant rpm source for the propeller. Thus the commanded u
was being taken as constant for any run, and n represented a

constant multiple of u, producing the dependent state.

Application of the chain rule to the system of 11
equations in 11 unknowns (used to calculate the A and B
matrices) reduced the order of the system to 10, and

eliminated the unstable state.

It is hoped that this example may serve to aid the reader
in the methodical elimination of similar problems in a

linear model.
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3.7 Summary

This chapter has described the technique of modal analysis
and its use in determining the eigenstructure and modal
composition of the state space description of a linear

model .

Application of this technique has enabled us to establish
the prerequisites required to pursue the LGEGG/LTR design
procedure to be covered in the next chapter. These are that
the open Ioop linear model be detectable and stabilizable,
and that the location of any non—minimum phase zeros be

determined.

Finally, an example of the usefulness of modal analysis in
tracking down an error in the linearization of the nonlinear

model was presented.
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Chapter 4

LINEAR MIMO DESIGNS

4.1 Introduction

This chapter presents the linear portion of the design
process, utilizing the LEG/LTR design methodology as the

MIMO design tool.

The design section begins with an overview of the complete
step by step LGG/LTR procedure, as tailored to conform to

the main focus of this thesis.

Augmentation of the submarine model dynamics with
integrators will then be discussed, along with a comparison
of open loop singular value plots for the augmented and

unaugmented 2@ knot model.

Finally, the methods used to ensure the identical behavior
of the singular values of the open loop plant at both the
high and low ends of the frequency spectrum will be

presented.
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Testing of the compensator begins with a comparison of the
step responses of both the linear and nonlinear models, and
concludes with simulations aof evasive maneuvers and control

surface saturation tests.

All parameters used in the design process and many of the
design products for all four models are contained in the

appendices.

4.2 The LGG/LTR Design Methodology

The multivariable LOG/LTR design methodolaogy consists of a

four step process [81.

Step one involves the development of a low frequency model

of the nominal plant and determination of the uncertainties’

present in the model. It is assumed that the frequency
range of interest for purposes of command following and

disturbance rejection is at low frequencies.

The uncertainty in the nominal model, including sensor
noise, unmodeled dynamics, and certain actuator dynamics, is
similarly assumed to be concentrated at high frequencies.
The determination of what constitutes high and low
frequencies consists of fixing the max i mum allowable

craossover frequency for the nominal design.
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In this thesis, the actual linear time invariant plant and -

the low frequency nominal model are taken to be identical, g
and no attempt 1is made to establish the model ing
* uncertainty. Therefore, step one is restricted to producing "o
the linear model, as was discussed in chapter 2, and
determination of the maximum allowable crossover fregquency
for each model, also discussed in chapter 2. —.
Step two of the design process establishes the low
frequency performance requirements. The frequency domain
block representation of the compensated plant is shown in i
figure 4.1.
dis
res) o €is) . ®is) . Fo> - A °
= > K(9)- — Gl | -
o
Figure 4.1. Block Diagram of a MIMD Compensated Plant
r{s) = reference signal or command input vector °
e{s) = error signal vector
u(s) = control input vector to the plant
zp(s) = ogutput vector of the plant .9
d(s) = disturbance vector reflected at the plant output
K(s) = compensator transfer function matrix
G(s) = (augmented) plant transfer matrix -9
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The transfer matrix G(s) is assumed to contain the nominal
low frequency model of the submarine §p(s) plus any
augmented dynamics ga(s) and is termed the nominal design
model . Thus G(s) = Qp(s) ga(s). To determine the
requirements to be imposed on the compensator transfer
matrix K(s), the overall transfer function of the closed

loop system is calculated

1

y(8)=[1+6()K(s) 1 ld(s)+[I+6(s)K(8) I G (s)K(sIr(s). (4.1

Good command following requires that y(s) ® r(s) and good
disturbance rejection will result if the contribution of
d(s) can be kept small. Here, s = jw is in the low end of

the frequency spectrum.

Both of these requirements can be met if the minimum
singular values of the matrix praoduct G(s)K(s) are large

with respect to unity at frequencies below crossover.

Similarly, the response of the outputs to high frequency
effects can be minimized if the maximum singular values of
G(s)K(s) are small compared with unity at frequencies above

Ccrossover.

The combined effect of steps 1 and 2 is ta place barriers
on the singular value plot for G(jwK(jw) as indicated in
figure 4.2. The high frequency barrier places a robustness

requirement on the compensator and the low frequency barrier
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is a result of the command +following and disturbance

rejection requirements.
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Figure 4.2 Desired Singular Value Relationships

The remainder of the design process is concerned with
determining the transfer matrix K(s) so that the singular
values of the open laap transfer matrix G(jw)K(jw) will have
the shapes shown in figure 4.2. This process is known as
loop shaping and is at the heart of the LAG/LTR design

procedure.

Initially, the Kalman Filter methodology is applied to the
state space description of the nominal design model (nominal
model plus augmentation) to produce a transfer matrix EKF(S)
that has the desired loop shapes. The Kalman Filter theory

is applied in a very specific manner and should not be
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confused with optimal state estimation applications.

To solve the Kalman Filter problem, the nominal design
model state space description,
x(t) = A x(t) + B u(t) (4.2)
y(t) = C x(t), (4.3)
is reformulated to produce the somewhat modified dynamics
x(t) = A x(t) + L $(t) (4.4)
y(t) = C x(t) + o(t). (4.35)

where % (t) represents the process white noise,

and €(t) represents the measurement white noise.

The covariance of these two BGaussian signals is

covi3(t)53(T)] = 1§ (t-T), (4.6)
and covi®(t);0(7)] = al§(t=7) (u > D). (4.7)

The design parameters a and L are then used to produce the

desired loop shapes of the transfer matrix G__(s) where

3kF
1

6, -(s) = C(sI~-A) 'H, and (4.8)

2kF
H= (1/J0 EC°. (4.9)

The matrix £ is the solution to the Filter Algebraic
Riccati Equation (FARE)
@=AL+F A" +LL - (1/yp0) £CCE. (4.1@)
Fortunately, the transfer matrix EKF(I) can be approximated
qQuite readily, providing that the parameter a << 1, and the

FARE need not be evaluated for each choice of u and L. It
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can be shown [8] that

0, [Bp(iw)] = (1/40) 0,6, (jw)l, for << 1, (4.11)
. -1
where G, (jw) = C(sI-A) L. (4.12)

Thus the L matrix can be chosen in such a way as to
produce the desired loop shape and px used to adjust the
singular values up and down to meet the required crossover

fraquency criteria.

Providing that [A,L] is stabilizable, and that [A,C] is
detectable, any choice of p and L will produce the following

guaranteed properties for EKF(5)=
1. Closed loaop stable

2. robustness:
(jw)]) & 1 (4.13)

-1

o) C 18y

oitlrQKF (ju)] 2 1/2 (4.14)
3. Infinite upward gain margin
4. &b db downward gain margin

S. Phase margins of t &0°

The final step in the LGEG/LTR design procedure involves
the “recovery™ of the loop shapes of EKF(S) by the
compensated plant transfer matrix G(s)K(s). This is
accomplished by solving the Control Algebraic Riccati

Equation (CARE)

|
F PR,

A s o 4 s34 i

t
1




R it abod

@=-KA-AK-qCC+KBBK; q>@ (4.15)
using the design parameter q, and defining the control gain
matrix G by

6 = B'K. . (4.16)

For the solution to the CARE to be valid, we must have
[A,B] stabilizable and [A,C] detectable. Furthermore, the
nominal design plant must not have any non-minimum phase

zZeros.

The control gain matrix 6 and the filter gain matrix H
(4.9), when calculated using the above procedures, define a
special type of compensator EHBC(S) known as a Model Based
Compensator (figure 4.3). This type of compensator differs
from other LEG/LTR compensators only in the manner in which

the control and filter gain matrices are calculated.

B
Filter =
Gain
e(s) + : &)
< + + Z(3)
“.L ‘ t‘ i 2'(5) _ -—Q o
CC.\*R‘
Q Gain

Figure 4.3. The Model Based Compensator

The state space description of thel (model based)

compensator is then given by

- %9 -
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2(t) = (A-B B-H C) z(t) — H e(t) (4.17)

u(t) = -G z(t), (4.18)

It can be shown that the singular values of G(s)K ..(s) at
frequencies below crossover converge to those of QKF(S) as
the design parameter q » ©, providing that the plant is
minimum phase [8]. At frequencies above crassover, an egtra
pole of roll—-off is produced by the recovery phase, further
enhancing the high frequency robustness. Thus the loop
shape of §KF(s) is recovered and the resulting controller
will have the desired performance characteristics described

earlier.

4.3 Augmented Dynamics

The dynamics of the submarine model are augmented by
placing integrators in each of the three control channels.
This is accomplished by defining an augmentation plant Ea(S)
whose state space description i- simply

A,L=9,B =C =1,

with all matrices being 3 x 3.

- &0 -

o]

et b

PP WY N




r—-—— == -"—= = - i
1 |
| I
«“(s) UptS)
._______%_ I Yo __lﬁ___d_‘g?“, : o)
l |
! |
et e e e m e e - . —— — '

Figure 4.4. Inclusion of the Augmented Dynamics

Then the nominal low frequency model and the augmentation
dynamics are combined by performing a state space
multiplication, forming G(s) as shown in figure 4.4, Note
that the physicaf input to the plant is now labeled gp(s) to
distinguish it from the output of the compensator u(s).
Although the augmentation dynamics ga(s) will eventually be
lumped with the compensator, they are kept separate until
the LAG/LTR design procedure is complete. Figure 4.5-shows
a comparison of the singular values of the unaugmented and
augmented 20 knot model. As can be seen, adding the
integrators at the plant input produces a 6@ db gain

increase at .901 rad/sec.

2.4 Kalman Filter Design

In the overview of the LGG/LTR design methodology, it was
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stated that the singular values of the Kalman Filter
transfer function matrix are closely approximated by the
singular values of (1/Jﬁ)§F0L(Ju). Furthermore, QFDL(Ju)
can be easily calculated for each choice of Ly, simplifying

the iterative nature of the design process.

To satisfy the 1loop shaping requirements represented by
the low and high frequency barriers shown in figure 4.2, it
is helpful if the maximum and minimum singular values of
G,., (jw) are identical at low and high frequencies.

—«F
Therefore, the choice of L is based on this philosophy.

Recall that G(s) = §a(5)§p(5) (section 4.3) and define a
state space representation for G(s) by the relation
G(s) = C(sI-A) lp. (4.19)

Then the matrices A and C can be partitioned into

A = C=¢(0 c_ 1, (4.20)
B A P
P P
and similarly for sI-A and its inverse
s1 @ 1 1/s )
sI-A = (sI-A) = -1 -1} (4201
-B I-A (sI-A) (sI-
B, iy sl-A, gpls sI-A)
At low frequencies, sI-A = -A_ and (sl-ep>'1 = -ep".

Recall that Qp-l exists since ep has distinct and non-zero

sigenvalues. We now partition the L matrix into El and L,

I

ad




o eml 70

and form G (s) far low frequencies

SeoL
. s @ ||,
Brg (s = CtsI-® 'L = ta €3 o s (4.22)
-a /s -a L
% % =2
x-Ca lBL/s~Ca W
p-p Pl “pp =2

From this, it is seen that we can match the singular

values at low frequency by choosing

-1, -1
L, = —(C A 1B) (4.23)
=1 T "% o0

if it exists, and leaving 52 unspecified. Then, as w -+ 0@,

EFDL(ju) = I/je + M, (4.24)

where M is a 3x3 constant matrix. Although M will have an

impact at frequencies approaching crossover, the first term

will dominate for «» small enough.

At high frequencies, sl—ﬁp * sl and (slfep)—l % 1/s. Thus,

at high frequencies, we have

/s L,
Bopy (5) = Eg c:] (4.25)
—FoL g /g2 1/s| | L
- = =2
CBL,/s2 + C.L./s.
T Sptpmt =p=2

Since 1/s > 1/32 ags s » o©, then the second term will
dominate the maximum singular value at high frequencies.
Thus we can match the singular values at high frequency by

choasing
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L C ‘(C.C_") (4.26)
s0 that, as o -+ o,
. 2 .
§FDL(Ju) = -C B 51/" + I/w. (4.27)

The required inverses can be shown to exist for the models
used via numerical means. Additionally, whenever gp is such
that distinct states are extracted from the state vector,

the matrix gpgp' is always diagonal and hence invertible.

The above method of constructing the L matrix provides the
designer with a guarantee of identical behavior of the
singular values of the Kalman Filter transfer matrix for- low
and high frequencies. Unfortunately, the shape of the
singular values at frequencies near crossover is not
controlled, and significant differences may exist between
the maximum and minimum singular values in the crossover
region. Figure 4.6 is a plot of the singular values of
G

=F
and 4.26. Although the singular values match at high and low

OL(s) for the L matrix constructed as in equations 4.23
frequencies, a large separation exists between the maximum
and minimum crossover frequencies.

To control the separation of the singular values at
frequencies near crossover, it is necessary to investigate

the magnitudes of the elements of the matrix transfer
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function §FDL(ju) over a frequency range including the
crossover frequency, and apply scaling to the Qp matrix to
achieve a tight crossover pattern. The magnitudes of the
elements of the matrix transfer function are plotted in
figure 4.7 for each input to output function. Each of the
plots represents the coupling from the three controls to a
single output. The curves are fairly smooth e;cept for
figure 4.7(a), which shows the coupling from the controls
ds, db, and dr to the output w. The desired crossaver is at
o = 3.100, or log « = -1.00, and figure 4.7(a) displays both
an increase in coupling from dr and a decrease in coupling
from db in this area. Referring back to table 3.1, it was
observed that the dc gains for w were significantly higher
than for r and ©. Both of these facts tend to indicate that
the Ep matrix entry corresponding to w should be scaled
down. A comparison of the magnitudes of the transfer
matrices in this wmanner for all <four submarine models
resulted in the following choice for the C_ matrix.

Q a " 2 e

1
o ") ") 1 e U} (4.28)
e ) "] 2 2 1

C
-p

The vast improvement in the behavior of the singular
values near crossover can be seen in figure 4.10(a), a plot
of the singular values of QFOL(s) for the 20 knot model

ing the new C trix.
using new Lo matrix
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A more detailed discussion of output variable scaling for
the purpose of shaping the singular values at frequencies

near crossaver can be found in [14] and [151.

Once the L matrix has been determined, the choice of the
parameter u becomes a simple matter of moving the singular
value plots up or down until the desired crossover frequency
is obtained. Refer to table 4.1 for a listing of the
particular values used for a for each of the models during
the Kalman Filter design process. The Kalman Filter gain
matrices are contained in appendix Cl.

Table 4.1. Values used for a

Model 2
SSRS .04
S1@RS .85
S20RS - 95
S25RS .24

4.5 Completing the LQG/LTR Design

As was indicated in the overview of the LAG/LTR design
procedure, once the Kalman Filter design is complete, the
remainder of the design process is quite straightforward,

requiring only a choice of the parameter q. Recall that our
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submarine models did not have any low frequency transmission
zeras. A value of q = 100.0 was used for all models,

producing the control gain matrices in appendix C2.

The complete design sequence is summarized in figures 4.8
through 4.11, the singular value plots of QFOL(S), EKF(S)’
and G(s)K(s) for each of the four models. The maximum and
minimum crossover frequencies for the final loop transfer

function matrix [G(8)K(s)] are summarized in table 4.2.

Table 4.2. Final Crossover Frequencies for G(s)K(s)

Model

“min “max
SSRS .016 . 250
S10RS . 020 . 048
S20RS . @829 .@78
S25RS . 024 .a79

4.6 The Closed Loop System

Prior to beginning the testing phase of the compensator
design, properties of the closed loop plant will be

investigated.

The state space representation of the closed loop system

can be written down by inspecting figures 4.1 and 4.3. Let
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x(t) represent the state of the nominal design model and
z(t) the state of the compensator. Then the closed loop

system can be described by

X (t) a -B 8 x(t) ]

= N + T et
2(t) e aBeHcC||zw |uc
4
yeor = [e 8] |xces (4.29)
z(t).

The poles and zeros for the closed 1loop system are
contained in appendix C3. All poles are in the left-half

plane so that the system is in fact closed loop stable.

By setting d(s) equal to zero in equation 4.1, it is seen
that the singular values of the closed loop plant should be
very near unity (zero db on a log plot) from dc up to the
crossover frequency, and then fall off above crossaver.
This is depicted in figures 4.12 and 4.13, the closed loop

singular value plots for all four models.

4.7 Testing of the Compensated Submarine Model

Testing of the LRG/LTR model based compensator design was
accomplished by providing the computer program with a data
file containing time sequenced command inputs and then

integrating either the linear or nonlinear equations of
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motion. The command inputs for each test are superimpaosed
on the output variable time histories to indicate the time
that the command was applied and also to provide an implicit

error history.

Results are shown for the 20 knot model only as it enjoyed
the most exhaustive testing. Check runs were made for th-

other models and displayed similar results.

4.8 Comparison of Linear and Nonlinear Simulations

The initial testing consisted of a comparison of the
responses of the linear and nonlinear equations of motion to
séép inputs. Figure 4.14 is representative of this stage of
testing and shows the time histories of the three output
variables (w, r, and 6) and the three control surfaces when
the submarine model is subjected to step inputs in w and 6.
For this plot, the initial values of the command inputs were
set to the nominal values for the 20 knot model, with the
step changes being applied at t = 5@ seconds, and removed at

t = 1008 seconds.

The reader should note the coupling that exists between
the stern and fairwater planes as they deflect in opposite

directions (as they should) in response to the pitch command
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(figure 4.14 j and 1). Additionally, the pitch command

completely dominates the response initially and the command
{ .- in w has no effect until the pitch error decreases. This
P .. should not be the case if the inertial variable z was used

in place of w, although any demonstration of this
supposition will have to wait until the computer model is

changed.

Figure 4.14 also displays the effects of the cross
coupling that exists between vyaw rate and pitch, as
indicated by the variation in yaw rate (r) (figure 4.14 (e)
and (f)) and the rudder deflection (figure 4.14 (m) and (n))
at the time when the step command is applied in © (figure
4.14 (g) and (h)). This is a result oaof both the
unconventional operating point that the model was linearized
about and the non-zero roll angle. Recall that the nominal
point reflects a diving turn so that a roll angle is present

for this maneuver.

The main objective of this test was to determine the
extent of agreement between the 1linear and nonlinear
compensated models in order to establish the validity of

both the compensator design and the computer software being

used for the simulations. The extremely close agreement
between the time histories for the linear and nonlinear

madels displayed by figure 4.14 thus establishes the
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validity and permits further. All further simulations are

performed using the nonlinear computer model.

4.9 Further Simulation of the Nonlinear Model

Having established the validity of the compensator design
by successful comparison of the 1linear and nonlinear
simulations, the next step is to examine such factors as
symmetry, multiple commands, and control surface

saturation.

The degree of symmetry present in the submarine model was
evaluated by commanding a turn first in one direct?on and
then in the opposite direction. The results are shown in
figure 4.15 and reveal that even with the unconventional
operating point used in producing the linear model ,
remarkable symmetry exists in the expected state variables.
The roll angle (¢) time history is included in this figure
to display the submarine’s tendency to lean into a turn. A
rather curious phenomenon is also displayed in that the
submarine pitches up initially when commanded to turn. This
trait reportedly exists in an actual submarine and was also
observed on the real time simulation facility mentioned in
the introduction to chapter 2. Finally, naotice that the

performance of the controller begins to degrade at about 135
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seconds as the forward velocity reaches 334 belaw the
nominal point, indicating that gain scheduling is

necessary.

The multiple command test was accomplished by simulating
an evasive maneuver. The command inputs are applied at
different times and simulate first a diving turn followed by
a recovery of the initial conditions. The results of this
test, shown in figure 4.16, display the ability of the
controller to respond to commands in both vyaw rate and
pitch. Again we see that the pitch command has significant
effect on the yaw rate due to the cross coupling. Also
displayed is the inability of the sail planes to control w
in the presence of pitch commands. The sail planes do,
however, aid the stern planes in the initial response to a
pitch command by deflecting in the opposite direction, as is
desired. Note the loss of control in w at abaout 75 seconds

when the sail planes saturate.

To fully display the behavior of the compensated nonlinear
model during periaods of control surface saturation, the
reference inputs for w and © used in the previous test were
increased significantly in magnitude and the simulation
repeated. The results are presented in figure 4.17 and
display a 1loss of control during saturation along with

periods of lightly damped oscillatory response. Al though
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the command inputs are removed at 158 seconds, the errors
don‘t return to Zero until nearly 308 seconds. af
particular note is the constant error in w during
saturation. This can be seen to be caused by the sail
planes since the error in w begins to decrease the instant
the sail planes come out of saturation. Also nate that
although a 25 degree error exists in pitch (the pitch
command was -50 degrees) at 60 seconds, the stern planes are
only slowing increasing in deflection. The large control
surface deflections have slowed the submarine to nearly 9
knots by this time, however, accounting for the decreased
control gain. Observe that the submarine speed rapidly
decreases when the rudder saturates, but slowly ipcreases in
speed past 180 seconds, even though the sail planes

saturated.

4.10 Summary

This chapter has presented an overview of the LOG/LTR
design methodolagy and then the application of the
methodology to the design of a compensator for the submarine

madel .

Compensator designs were developed for all four linear

models of the submarine, providing the information necessary
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to apply a nonlinear curve fit to the compensated

parameters, laying the groundwork for the gain scheduling

algorithm in the next chapter.

Time histories for the 20 knot madel were presented that
further validated the linearization of the nonlinear
equations of motion and displayed the ability of the
compensator design to control the submarine nonlinear madel
as long as the forward velocity remained close to the

nominal point.

Finally, the loss of control that can result from

saturation of the control surfaces was demonstrated.
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Chapter S -

NONLINEAR MIMD DESIGN

9.1 Introduction

It is well known that drag‘ and 1lift forces on a body vary
as the square of the velocity L16]. Therefore, a
compensator designed for a particular speed should not be
expected to provide optimum performance over a widely

varying speed range.

This chapter demonstrates the technique of gain scheduling
as a methad of introducing the inherent nonlinearities due

to velocity into the compensator design.

The algorithm used to implement the gain scheduling is

presented, along with representative nonlinear simulations.

5.2 The BGain Scheduling Algorithm

In the previous chapters, linear models of the submarine
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dynamics were developed for +four different speeds, and an
LAG/LTR design performed on each model. The products of the
design effort were the Kalman Filter and Control gain

matrices contained in Appendix Cl1.

The specifics of the computer implementation of the model
based compensator require that the compensator be defined by
and 4.18). As a result, the gain scheduling algorithm must
produce the required coefficients to calculate the

individual entries for these matrices.

The fact that 1ift and drag forces vary as the square of
the velocity indicates the choice aof a polynomial least
squares algorithm to produce the required coefficients.
Additionally, application of a least squares algarithm to
matrices as large as 11 x 11 requires that a computer be
used. The fortran program in Appendix D1 is an adaptation
of the vector based program developed by A. Miller 171 that
will accommodate square and non-square matrices up to order

11.

The program calculates correlation coefficients for each
coefficient produced, providing a determination of how good
the approximation is. As expected, a linear fit (polynomial
of order 1) produced very poor correlation. A second order

curve fit produced correlation coefficients averaging .98,
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with a third order fit only marginally better. Since
implementation of gain scheduling would require 187 #* n

multiplications and 187 * n additions, where n = the order

of the polynomial, a minimal order polynomial is desired.

Thus a second order polynomial was used to calculate the
coefficients. The results, along with the correlation

coefficients, are presented in Appendix D2.

The fortran program implementing the submarine model at
CSDL was then modified to permit the coefficients +Ffor the

A~-B G-H C, G, and H matrices to be read in, and new values

for these matrices calculated for each iteration during
integration of either the linear or nonlinear equations of
motion. 7To calculate a particular entry for one of the
matrices, say the (i,j) element of the H matrix, the current
forward velocity u(t) is first converted to knots (uk).

Then, if c. are the coefficients

i,j,0® ci,j,l’ and c

i,d,2
calculated by the gain scheduling algorithm for that element

of the H matrix, the updated value is given by

h + u, (¢ + u, (c )) (S5.1)

k k i,_j,2
Note that the order of multiplication and addition has been

. B2 C., . PO
ieJ iy,i,o i,i,1

arranged to require the minimum amount of calculation.

The fact that the computer implementation of the submarine
model did not provide for propeller rpm to be varied was

overcome by setting the rpm to the final speed and
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introducing the initial speed into the initial conditions.

5.3 Testing of the Nonlinear Compensator

Although the above method of overcoming the constant rpm
constraint of the model permitted simulation of gain
scheduling, the flexibility of the simulation was somewhat
limited. Only one speed excursion could be accomplished
during any single run, with the propeller always rotating at

a constant rpm.

Figure 5.1 simulates changing depth without imparting a
pitch angle to the submarine and provides an excellent
example of both the usefulness of w(t) as a state variable
and the increase in control surface gain produced by the
gain scheduling algorithm. The time history of the sail
planes (db) indicates their dominant role in this maneuver.
Although the command in w(@.5 ft/sec) is attained quite
early at 460 seconds, the submarine is still slowing and the
nonlinear compensator increases the sail plane deflection
accordingly. The second command in w, at 275 seconds,
produces the same magnitude error signal, but results in a
much larger initial deflection of the sail planes due to the
lower speed. The error in w is seen to stay constant and

very near zero during the sail plane movement.

- 97 -

P

. - -



R{ 2

— L + — 1 - et —t— 4= + +——t — et — +
g., ]
4 1
[y
~
":3‘* 4
1 | [
T AURUSY VNS S VST S SUMMEY S S S0 G N o - e
%D 60 120 180 240 300 360 420 480 540 e
TIME
(a) Farward velocity u(t)
-
+ e ——4 e —
s -
st
— th +
ﬁa
:°. _
ng i
- I
= 4
gl D | f
o e VA S e B s e o e e P
) 60 120 180 2u0 300 360 %20 480 S4Q s00
TIME
(b) Vertical rate wi(t) ]
'
" e O + e p———+ t et At t |
oS L ——ad
Lo A2
x“k
Ssg //”*\\ |
4 \/\/ 1
z 1
€1 L J
=g
ottt «
‘0 ) 120 180 2u0 300 360 Q20 480 540 600
TIME
(c) Yaw rate r(t)
e L.
=3 |
-
1 1
5
a8
—? N
[+ \/\\/ -
[ -+
u -
Xa
e R . . . . P
et} —t —+ + ' -
) 60 120 180 240 300 360 420 ¥80 540 600

TINE
(d) Pitch angle 8(t)

Figure 5.1. BGain Scheduling Demonstration

- 98 -




T
T
L
%
:

8
“:T /\ .L
[ oYt 1
h . o g L d 1.
S
e
® } - f——t ——— e}
) s0 120 180 240 300 360 420 Y80 540 600
{ TIME
f (e) Stern plane deflection
P b " s i 4= + 4= + P b 4 4 -t s + i n
1 -]
af 1
- + 1
e
1= o
! |
(-]
e
o 1 — 4 e e o . v S | ¢ et~
‘0 60 120 180 2u0 300 360 420 480 S40 600
TIME
(f) Fairwater plane deflection

)
>
>

3
T

(
C
(

<

g

) 4 + + —t et e e N B

0 60 120 180 240 300 350 420 480 540 609
TIME

(g} Rudder deflection

Figure S.1. (Cont ‘d)

- 99 -




The next two simulations reflect an attempt to further
define the nature of the cross coupling that exists between

pitch angle @ and vyaw rate r. Both tests have initial

conditions corresponding to the nominal point for the S knot
model with the final speed equal to the nominal speed for
the 25 knot model. Command inputs were applied as step

signals that corresponded to the nominal values for the

three output variables for the 10, 20, and 25 knot models.
The step inputs far the 10 and 20 knot nominal points were
h timed so0 as to occur simultaneously with the submarine
attaining the forward velocity appropriate to that nominal

point.

L
In figure 5.2, the submarine is allowed to settle for a

short time at the 20 knot nominal conditions before the
final step change is applied. In figure 5.3, however, the
last step change is applied as soon as the appropriate
velocity is reached. Thus the two time histories are
identical up to about 35 seconds. A comparison of the two
sets of time histories reveals that the cross coupling
between yaw rate and pitch angle is not minimized in the

second test, although this might be expected since the

submarine should be experiencing an attitude very similar to
that for which the compensators were designed. Instead,
although the curves appear smoother in the second test, a

close inspection of the errors and the control surface
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deflections reveal that the degree of cross coupling is a
function of the yaw rate error at the time when a step
change is applied. In figure 5.2(c), the error in the yaw
rate when the third step is applied is approximately 0.003
rad/sec whereas, in figure 5.2(c), it is nearly twice as
large. The result is a larger overshoot for all three
outputs and an increased rudder deflection. Furthermore,
although the third step change was applied 5@ seconds
earlier in the second test, the errors at 200 seconds are

larger than for the first test.

Time did not permit further investigation of the cross
coupling present in the submarine model simulations. It
should prove informative, however , to compare the
simulations of figures 5.1, 5.2, and 5.3 to identical
simulations for submarine models linearized about a straight

and level trajectory.

The last test, shown in Figure 5.4, illustrates a speed
increase from S5 to 25 knots with all commands set to zero.
This simulation reveals an oscillatory response not present
in any of the simulations presented so far. It occurred
consistently for all tests of the nonlinear compensator
involving a speed increase to approximately 3@ knots and
having significant time for settling out to steady state.

It should be noted that the oscillations are quite small in
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amplitude and are very lightly damped.

Al though the cause of the oscillations was not determined,
some phase lag appears to be present in the stern plane
deflection compared to the error in 6. This indicates the
requirement for more data points to accurately predict the

model ‘s behavior at higher speeds.

9.4 Summary

This chapter discussed the motivation for including the
nonlinear aspects of the submarine model ‘s response into the
compensator design. The technique of gain scheduling was
introduced as the method by which this could be
accomplished, and the specific algorithm used was

presented.

The first gain scheduling simul ation, figure 5.1,
highlights the application of this technique in the time
history of the sail planes (figure S5.1(f)). Simulations
using the full nonlinear controller were also presented that
further demonstrated the cross coupling present in the

submarine model.
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Chapter &

SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

6.1 Summary

This thesis has presented a multivariable control design

example consisting of the following steps:

1. Four linear models of a full size submarine were
devel oped ‘using a computer implementation of the
linear and nonlinear equations of motion.

2. The resulting models were reduced in order by
inspection of the A and B matrices and subjected to
modal analysis to determine their suitability for the
LOBG/LTR design procedure.

3. Response characteristics of the open laoop nanlinear

model were used to establish guidelines for
performance specifications and additional dynamics
were included in the models in the form of integrators

in each input channel.
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4. The controller was designed using the LGEG/LTR combined
time and frequency domain methodology as formulated by
Stein, Dayle, et.al. fLoop shaping techniques were
independently devel oped that provided identical
behavior of the singular values at both ends of the
frequency spectrum for linear models using integral

control.

S. A nonlinear capability was added to the controller
design using the technique of gain scheduling. A
second order pol ynomi al was used to produce
coefficients that enabled prediction of the

cbmpensator matrices for nominal points not modeled.

6.2 Some Conclusions and Directions for Further

Research

Modal analysis should be used as a first step in any
multivariable controller design. It not only provides all
of the necessary information for proceeding with the design,
but also provides invaluable reference material for
determining the cause of any anomalies in the behavior of

the model.

The techniques used in this thesis to match the singular
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values of the Kalman Filter transfer matrix are simple and
straight-forward. Unfortunately, they only apply when
certain of the matrices used are invertible. An extension
of this method to cover the case of .noninvertible matrices
using a perturbation matrix would provide a useful and

general tool to the control system designer.

The extreme usefulness of singular value characterizations
for multivariable systems was demonstrated in this thesis.
The concept is an easily understood extension of the
familiar Bode plots and provides a convenient means of
describing and then ensuring the attainment of performance

requirements for multivariable systems.

The cross cnupling between vyaw rate and pitch angle
displayed by the submarine models used in this thesis
requires further investigation. In particular, performance
and transient response for models linearized about a
straight and 1level trajectory should be compared to the
simulations presented herein. Such a comparison should
allow a determination to be made as to whether or not gain
scheduling needs to performed on the basis of roll angle as

well as forward velocity.

The gain scheduling algorithm described in the previous
chapter is an idealization in that the compensator matrices

were updated on each iteration of the integration. An
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actual implementation of gain scheduling might require that
an overlapping step type of approach be used to decrease
both the computational burden and the possibility of

introducing instabilities into the controller.

In so far as the purpose of this thesis was to present an
LAG/LTR design example and demonstrate the technique of gain
scheduling, the reference plane praoblem was ignored.
Unfortunately, controlling a submarine in an inertial
reference frame utilizing a body coordinate system somewhat
abstracts the state space description of the submarine
model. To make the conversion externally, however, presents
the control system designer with a time varying C matrix.
Replacement of the state variables w and r with the
derivatives of 2z and ¥ would provide a more useful set of

state variables for the purposes of controller design.

Although the submarine has six degrees of freedom in its
environment, the three control surfaces permit the control
of only three output variables. Of course the constant rpm
constraint placed on the model in this thesis is artificial,
and was intended only to reflect current operating
procedures. The addition of propul sion control and
differential action for the control surfaces (rudders and
stern planes) would provide a total of 6 controls, vyielding

a much more flexible system.
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Appendix A ]

State Space Matrices for the Linearized Models

The elements of the A and B matrices are presented in the
standard row and column format. In the case of the A
matrices, the 18 elements of each row are displayed as two
rows, containing the first five elements in one row and the

second five elements in the next.
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-.8532E-02
. 1590E+31

« 1532E-02

- 269QE-03
-. 1840E-01

-.3420E-04
-.1544E-01

-.7759€E-@5
-.5396E-03

-.2941E-04
-.8534E-01

. BO0RE+00
-.2027E-01

. DOPOE+00
. 1050e-01

. 0000cE+00
. 1000E+@1

. 2027e-0@14
- DOOOE+Q0

-.11646E-01

. 000QE+00

-.4036E-01

.1318E+0@0

. 6475E-03
. 0000E+0a

-.2184E-02
-.1621E+00

. 6245E-@S
. 000QE+00

-.2764E-03

. 2618E-03

. 000BE+20
- 5899E-12

- DODRE+-2D
. 6547E-02

. 0000QE+020

-.2911E-10

-. 1856E-01

. 7882E+00

-.1122E-02

. 2000E+00

-+ 7633E~-01

. 2000E+00

-. 1845E-02

. 0000E+08
. 0000E+00
. 00@RE+0Q
. 2002E+0Q
. BOOOE +00

Model SSRS

A Matrix

-. 1594E-03

« 2954E-03

. 1187E-02

-.28@5c-04

—. 2264E-01

«7616E-02

-.74196-03

. 2208E-03

-.2512E-02

-. 7509E-05
-.5572E-07

. 3000E+00

-. 6549E-02

- DOOOE+2D
. 0300E+20

. 0000E+20
« 1327603

. 997E+80

-.9643E+01

B Matrix

-. 2826E-02

. 2002E+00

-.5624E-01

. 2000E+00
- S5402E-@3
. 200E+20
. 002E+00
. Q022E+00

. 0000E+20
. 000RE+00
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-.1001E-01

. O00RE+00

-.3551E+00

. Q00QE+00

-~.B8010E+00

. 00GRE+00

-.8579E-01

. 0000E+00

-~.6028E-02

. 0000E+20

~-. 1346E-02

. 30028E+00

. 1000E+01
. 00Q0E+00

. DPOBE+20
. Q0BRE+20

. 0DOOE+00
. 300QE+00

. 000eE+22
. 0002E+020

-.1137e-01

. 8949€-01

-.2885E-06

. 1661E-02
. 9514E-07

-, 2266E-02

. Q0Q2E+00
- 020E+00

. 00Q0E+0Q
. 0000E+20

. 2036E+00
. 000QE+002

. 1268E+00
. 20COE+00

.2183E+01
. 200GE+00

-.1323E+00

. 0300E+0a

-.8562E-01

. 0000E+2a

-.7110E-04

. 2000E+00

«2128E~03
. Q002E+0Q

« 9999E+00Q
- 000E+00

-. 1050E-021

. 3002E+0Q

. 2000E+20
. Q0AGE+Q0

—
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Model S510RS ;o

A Matrix
-.1491E-@1 -.2067E-01 -.793SE~-03 -.1777E-01 . 2705E+0@
.. «2832E+01 . 3A02E+3A « 2948E-@3 . 0200E+00 . 000QE+0Q
<2771E-82 -.7146B8E-@1 .1182E-02 -.S5BABE+00 - 2069E+00
- 4362E+01 .1314E+00 -.3061E-03 . 0000E+Q20 . 000RE+00
- 493SE-03 .1470E-02 -.4014E-~-01 -.1427E+01 .3871E+01
. -« 1274E-01 . 0000E+Qd . 7S599E-02 . 0002E+00 . 2002E+00
- 6136E-04 -.3913E-02 -~—.1330E-02 -.1522E+00 ~-.2374E+00
-.2094E-01 -.1616E+Q0Q « 376SE-@A3 - 0000E+Q0 . 3000E+2@
-. 1447E-04 - 5635SE-05 .3919E-03 -.10469E-01 -.1519E+00
k -. 1162E-02 . 0000E+Q0 -.2506E-02 . 0000E+20 - 00Q0E+0Q
~-.5373E-@4 -.4B895E-03 -.7697E-05 -.2670E-02 .8318E-03
-. 1515E+@0 < 2611E-83 -.6081E-06 . D00OE+00 « 0000E+90
4 . 2000E+00 . 00PRE+Q0. - 0000E+00 - 1000E+@1 . 2328E-02
F -.7024E-01 .98168E-10 -.1168E-01 « 0000E+Q0 . 00QCE+00
. 800E+020 . 2000E+00 . BOPOE+QD . D02O0E+00 . 9995E+00
- « 3312E-01 «1162E-01 . A000E+00 . 0Q0QAE+Q0 . 0000E+00
\ . 0000E+00 . 000BE+Q0 . 3000E+00 .0000E+00 -.3I320E-0O1
F .1382E+@1 -.14@0E-08 . 8189E-83 « 0002E+00 « OO0OE+00
. .7O11E~-01 -—.3304E-01 « 9970E+Q0 -« 2000E+20 . 0000E+00
: . 000VE+0Q «1398E+01 -.1709E+02 . 02QRE+00 - 00GQE+0@
E P Matrix
: -.3512E-02 -.8903E-02 « SUB2E-01
L . D0OOE+Q0 . A000E+02 « 2910E+00
; . 2000E+Q0 . D00OE+00 «.S191E-02
- 5992E-02 « 1702E-02 « 2997E~06
; - A000E+00 - 0000E+00 « 7404E-02
« 2000E+2Q - A0QCE+22 « 200QE+20 S
- - DOOVE +00 . 30QVE+08 . 2000E+00 {
. PO00E+00 . Q0Q0E+00 . 00A0E+00
« 3Q00E+Q2 . 2000E+20 . 0000E+00
. :
4
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Model S20RS

A Matrix
-.2889E-@1 -~.4044E-01 -.&327E-02 -.3487E-01 -~.41469E+00
«5643E+01 . 02Q0E+A0 « 27S4E-@3 . 0000E+00 . 000GE+Q2Q@
.S5S53I9E-02 -~.1414LE+00 -.8891E-02 -.6934E+00 . 1803E+00
-.9060E+01 - 1216E+08 -—.6676E-02 . 000Q0E+GQ . O00QE+00
~-. 1206E-02 .7S565E-02 -.8581E-01 -.2851E+@1 « 7576E+01
« 1720E+00 - D000E+00 . 7099E-02 . DOOOE+Q0 . A000E+00

-.6092E-04 -.S099E-02 -.2414E-02 -.300SE+00 -.4355E+00
«2341E-@1 -.1496E+00 .8211E-02 . A000E+00 . 920OE+00

-.3405E-D4 -.3369E-D4 .72B81E-03 -.2096E-01 -.2998E+00

adl

‘TEY

e 3
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-.5757E-02 .Q000E+B0 -.2342E-02 . 0000E+QQ « 30QQE+00
-.1878E-03 -.9620E-23 .4209E-04 -—.792BE-02 . 1271E-01
- 2994E+00 “2417E-03 -.1326E-84 . 000QE+00 - 0000E+00
- 0000E+20 . 0000E+90 . 0000E+00 . 1000E+01 . 5434E-01
-.3853E+00 -.90S9E-@9 -.2650E-01 . 0000E+00 . A000E+Qa
- 2000E+20 « 00ODE+00 . 0ODDE+00 . 0000E+Q0 « 9902E+20
. 1397E+0Q . 2302E-01 « O000E+QQ . 000QE+Q00 . A000E +30
. 0002E+QQ « 002E+QD - 0000E+2d .BOQCE+20 ~.1499E+20
. 1063E+Q1 « 2498E-08 « 2609E-02 . 00PRE+20 - 000QE+00a
«3626E+00 -.1302E+00 « 9228E+00 . 200BE+00 . 00Q0E+00
. 320RQE+20 .2619E+Q1 -.3159E+0@2 . 0Q00E+00 . 000CE+00
B Matrix

-.1372E-@1 -.3478E-01 -.1399E+00

. A000E+00 . 0000E+@Q «1137E+21

-~ P43LE+D0 —.4921E+00 -—.3550E-05

. 00B0E+Q0 . 0020E+Q00 « 2028E-01

-.2341E-01 . 6648E-02 «1171E-0S

. 0000E+Q0 . 2002E+0@ -.2892E-01

. 0000E+00 . 00QE+20 . 2000E+20

« DOOOE+02 . 0000E+20 . 00Q0E+00

. 2000E+QD . 0Q0E+00 . 0B00E+00

« 000E+0Q0 - 2000E+00 . 0000E+00
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A Matrix
-.3521E-81 -.4803E-Q01 -.125S5E-@1 -—~.41446E-01 -~.1606E+01
«&762E+01 . 2000E+20 « 2343E~-@3 - 000E+00 . 2000E+008
<&H9SIE-02 —~.1718E+@0 -.2605E-@1 -~.313I7E+00 -~.103B8E+Q00
~.1124E+@2 .18017E+0@ -.185S0E-01 . 002RE+20 . 200RE+0D
~.1901E-02 « 1686E-01 ~.1060E+D0 -—.3427E+01 « 1 E+DL
- 4173E+Q0 - 0AQE+00 « b039E-82 . 000QE+20 . 000E+D0
«.3981E-04 -.1038E-Q1 -~,2127E-02 -.3679E+00 -~.3IF943E+00
.1083E+00 -.1251E+00 « 2275E-Q1 . 0000E+C0 . 3000E+00@
~.4478E~04 -~.9358E-04 8713E-03 ~.2491E-01 -~.346B1E+00
~. 132SE-21 -.ORARE+Q0 -~.1992E-02 - 000VE+0@ - 000QE+2Q
~. 1331E-@3 ~.1197E-@2 «112%5E-03 -~.1242E~01 « 29685SE-~01
- I6S2E+00 « 2020E-Q3 ~.3676E-04 - 002E+00 - 000RE+00
. 002E+00 . 30QBE+Q0 . DOBOE+00 . 1000E+01 «177QE+00
-.7482E+00 -~.2864E-08 -.4430E-01 « DO0VE +00 . BO0RE+20
L)
- 0000E+00 . Q000E+00 . GO00E+00 « ODOVE +00 «9731E+00
« 2303E+00 « 2784E~01 - A00NE+00 - DOOVE+00 . 000QE+00
. D002E+20 . Q00PE+20 - DODOE+00 -000PE+OR -—.290SE+00
«1227E+01 « 4699E~-08 - 2700E-21 - DOVRE+00 . 3Q0QE +20
- 689SE+08 -.1825E+Q0 « 7715E+00 - DODOE +00 . DODOE+00
« 10QA2E+QQ «2730E+Q1 -, 3I28SE+02 - OOO0E +00 . 020GE+20
B Matrix

-.2061E~-01 -~-.35221E-@1 -.21Q1E+0Q

. DOO0E+20 . DOO0E+00 - 1703E+D21

-.1444E+01 ~.1039E+01 -.3329E-03

. D00CE+30 . 3000E+08 « JO46E-01

-. 35@8E-A1 « 9981E-02 « 1738E-@S

- DOODE+0D .DOOPE+OD ~.43I3IJE-01

. OQ0E+20 . Q0QCE+QQ . 0002E+00

- O0QVE+0Q . Q002E+QD « O0Q0E+Q20

. 000E+00 - 000OE+O0 « 00VRE+20

- 0000E+00 . 0000E+00 « Q000E +00
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Appendix B

Modal Analysis Products

All matrices are presented in the standard row and column
format. Additionally, the data in appendices B2 through Bé&
;ro complex numbers. These numbers are always displayed
with the imaginary part directly below the real part. For
example, each row of a matrix with céﬁplex entries would be
displayed as two rows, the real parts in one row and the
corresponding imaginary parts in the second row. The

eigenvectors are presented as (complex) column vectors.
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fippendix B

Matrices Used to Perfars Unit Transforaations

1. Matrix used to presultiply both the A and B satrices:

1.0000E+00 0. 000GE+00  0.9000E+0 0.0000c+00 0.2000E+00 0.08€EE+00 2.03930c+00 0.0003E+20

| _EOEERS - REAAASAS ) Shiier

0.0000E+08 1.0000E+00 2.0900E+00 9.8900E+20 0.0000E+80 D.DOGBE+DR 9.2009E+00 0.0090E+RD
0. 0000E+00  0.2000E+30 1.0009E+30 0.2000E+94 0.0000£+20 0.0dR0c+80 2.8000E+00 0.00%0E+R0
0.0000E+09 0,0009E+00 0.Q000E+00 5.7300E+31 0.9Q00E+99 9.0000E+00 4.0000E+80 9.0000E+00
h §.0080E+80 0.0000E+30 0.2004E+20 9.0090E+M 5.7300E+00 O.300aE+80 9.0000E+00 .00B0E+80
7 0.0009E+00 9.0000E+00 0.0009E+09 0.9900C+89 0.0003E+09 5.7304E+01 B.0900t+00 0.09B0E+N
0.0000E+00 0.0800£+00 0.0000E+39 0.0300c+00 0.0800E+00 0.0000t+8@ 5.7300E+d! 0.2000E+08

r
Ll 9.9000c+00 0.002c+89 0.0000E+00 0.0009c+38 0.0008E+00 9.Q0Q9E+3 9.0800E+98 S.7388E+d

: 2. Matrix used to posteultiply the A satrix only:

1.0000E+09 0.0009c+00 ©0.0900c+00 0.00989E+30 0.0d0ac+09 9.0030c+00 0.0000c+d 9.0009E+0d
0.9900E+00 1.00GGE+30 0.0009E+D0 D.0Q00E+09 0.0000E+20 0.0000c+90 4.8003E+00 2.Qeadc+ae
0.0990E+08 9.0000c+00 1.0090E+0@ 0.0000E+09 9,0000E+09 0.0006c+08 9,.0000E+00 0,0000E+80
0.0000E+00  0.0000E+80 0.0000E+00 1.74526-02 0.00006+00 0.0009E+08 0.00R0E+Q0 0.0000E+d8
0.0000E+00  0.2000E+00 0.POGGE+DD 0.2000E+88 1.74526-02 0.0000E+00 9.0000E+00 0.0000E+80
9.0000E+00 0.000QE+90 09.0000E+00 0.0000E+30 0.0000E+80 1.74526-92 0.0000E+00 9.0200E+00
0.0000c+30  0.0000E+30 0.900GE+00 O.0000E+D0 0.2GRQE+20 0.9080E+08 1.74528-02 0.0900E+0

0.0000E+20  0.0000C+30 0.0000E+00 9. 0000E+00 0.0900c+08 0.3089E+00 0.0000E+80 1.7452E-22

3. Matrix used to postsultiply the B aatrix:

S.730E+81  0.0000E+00 9.9000E400
0.0004E+80 5.7384E+01 0.0000E+20

9.9000E+00  0.0000E+98 5.7300E+81
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-1.1277E-92 -2,47Q9E-22 -2.7489E-82
0.2909E+08 2.0003E+28 1.7643E-82

9.9201E-81 7.4178E-D1 8.9984E-02
1.1961E-81 6.6308E-01 2.9778E-82
0.9000E+08  0.2000€+d0@ -7.3528E-03

-1.8966E-83 B.5962E-82 7.5459E-81

-2.94326-85 2.3411E-84 1,7394E-83

9.2000E-00  8.0009E+0@ -2,7189E-04

-1.7819E-03 -9.0514E-83 1.1554E-83
3.9000E+30 0,8020E+89 -b5.8114E-083

-4.9499E-83 1.286BE-02 2.5286E-81
0.86d0c+03 ©,000@E+8@ -1, {295E-82

Appendix B2

Modal Decospasition far Mode! SSRS

Eigenvalues

-2.7689E-02 -4.1686E-02 -4.16B4E-82
-1, 7643E-02 3.9761E-81 -3.9741E-81

Eigenvectors

8.9994E-02 -2,9454E-03 -2.9654E-83

0.0000c+0@ 0.9@0QE+8@ C0.2352E-92 -3.2552E-02 -3.2693E-03 3.2493E-83

2.9778e-82 -2,2086E-01 -2,2085E-81
7.3528E-23 -2,7386E-Q1 2.758@E-01

7.5459E-91 -5.5826E-81 -5.5826€-81

0.8020E+30 0.0900E+29 5.9693E-81 -5.9093E-81 -5,4402E-02 5. 4482E-92

1. 7394E-83 -5.1519E-92 -5.1519€E-02

2.0000E+30 2.0000E+08 1,3394E-04 -1.3394E-84 Z.7309e-21 -2.73@9e-01

7.6272€-35 -2.4496E-24 -6.08074E-05 -6.BB74E-83 -4.J447E-03 -4.B647E-03
0.0000E+20 0.0000E+00 4.8192E-83 -4.8192E-83 -9.2717E-04 9.2717e-84

-8, 4622E-94 -J.5640E-3 -3. 1491E-04 -3.1491E-84 -5.9911E-P4 -5.9911E-04

2.7189e-00 -8.6137E-34 B.6137E-04

[.1554E-83 6.9284E-81 6.9284E-31
b.B116E-83 5.6878E-82 -5.5878E-82

2.5288E-91 -1,5238E-83 -1.5236E-83
1. 1295E-82 -1.0097E-83 1.0Q97E-23
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-5, 3308E-92 -9.8265E-22
0.2008c+28 0.2808E+B0

-6.92282-02 2.4123E-81
2.8008E+32 9.280QE+20

1.6124E-82 -9.7037E-21
8.0200E+29 0.200QE+00

-9.6383E-81 -B.9253E-83
0.0009E+00 0.0009E+20

~1.3353E-83 -1.8784E-23
.0000c+8@ @.202dc+08

1.3928E-82 -2.5031E-04
£.0000E+22 4.0da00E+dd

1.1526E-04 -2,0701E-22
9.d020c+00 9.0%@deE+22

~6.9590E-83 1.5894E-82
9.2000E+00 3.0008€+00

~2.6843E-21 3.7533E-03
.2000E+00 0.2@00E+02




Appendix B2 {cont’d}

Nodel S9R3

Controllability Matrix

7.2359E-03 2,2815E-Q3 -2.3825E-81
1.8821E-10 -1.2049E-18 1.35B@E-1)

8.3133E-23 -8.5143E-03 2.B357E-01
4.0045E-11 5.17626-11 -1,375BE-11

-8.4924E-82 5.7779E-82 -7.9711E-03
8.5281E-82 2,7335e-82 5.7777E-83

-8.49246-82 5.7778E-92 -7.9711E-83
-B.5ZB1E-82 -~2,7335E-82 -5.TTT7E-83

-1.4243E-83 1,5582E-04 4.9Q40E-04
7.2981E-05 4.1261E-85 -3.2958E-03

-1, 4243E-83 1.3582E-04 4.904QE-M4
-7.2982E-85 -4.1261E-85 3.295QE-83

-1.5716E-81 1.1410E-81 4.5351E-03
-7.2641E-13 ~6,0431E-18 -1.7913E-18

2.5616E-84 2.3229E-34 7.2342E-02
T.GO13E-12 T7.6491E-13 3.61126-13

Observability Natrix

-1.8966E-34 B.3902E-83 7.5439E-02 7.5459€-02 -5.5626E-82 -5.5824E-82 -9.6383E-02 -6.9253E-24
B.0000c+30 0.00009E+9@ 5.9493E-82 -5.9693E-02 -5.4402E-33 5.4482E-05 0.0020E+00 0.3000t+20

-8, 4622E-94 -3.5640E-B3 -3, 1491E-B4 -3.1491E-04 -5.9911E-24 -5.9911E-04 1.1526E-84 -2.8701E-82
0.00009E+00 0.0000E+00 -2.7189E-86 2.7189E-06 -8.6137E-24 0.46137E-04 0,0800E+03 0.2000E+00

-4.9409€-83 1.2868E-82 2.52086E-81 2,5288E-81 -1,523BE-03 -1.5238E-B3 -2.6843E-81 3.7533E-03
9.0009E+20 0. 2000E+20 -1.1295E-82 1.1295E-02 -1.0097E-03 1.0097E-83 0.0000c+d0 0.0030E+0Q
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Appendix BJ

Modal Decomposition for Model S1ORS

Eigenvalues

-1.99408-02 -2.2087E-82 -2.2087E~92 -4.7861E-82 -7.2735E-82 -7.2735E-82
3.0800E+28 1.5563E-82 -1.5563E-02 0.0000E+80 J.B4AJE-D! -3.B8643E-DI

Eigenvectors

-9.9844E-01 -5.4762E-03 -5.4762E-03 -7.7463E-01 -9.3156E-03 -9.3156E-83
0.2000E+28 4.9364E-82 -4.9354E-82 0.BOC0E+B® 4.3473E-03 -4,8473E-23

-1.2375E-81 2.03B7E-83 2.8387E-@3 -6.7361E-B1 -2.9994E-01 -2,99B4E-3!
2.QU00E+00  4,7499E-82 -4.3496E-02 0.0200E+0R 2,207@E-01 -2.2870E-d1

-5, P146E-02 6.5223E-81 6.5223E-B1 -5.4B62E-82 -2.845DE-B) -2.B650E-0)
0.2800E+28 7.2599E-01 -7.2698E-21 0.908RE+Qd 7.1837E-01 -7.1837E-01

{.4376E-24 1.5976E-83 1.5976E-33 -5.4565E-04 1,824BE-01 1.8240E-31
0.3830E+00 -1.8414E-87 1.8614E-2] 0.P3GGE+E8 B.5333E-92 -8,5333E-02

-3.3969E-84 G.B126E-84 S.0126E-04 5.4352E-85 -2.5188E-83 ~2.6180E-83
9.2020E+88 5.5292E-87 -5.4392E-87 ©.0000E+DB2 4.7088E-83 -4.7088E-83

8. 7144E-84 -1.8950E-04 ~1.0958E-84 3.4271E-83 -1.314BE-87 -1,31486-03
D.08000E+00 -1.5839E-84 1.4BS9E-04 0.DOMOE+BD 5.2738E-B4 ~5,2730E-84

4,1896E-03 -7.3394E-83 -7.3594E-03 1.5898E-82 1.2725E-81 1.2725E-01
0.0000E+08 -1.4485E-82 1.4405E-02 0.Q200E+80 -4.9525E-81 4,96Z5E-0t

1A109E-02 1. DM4TE-D1 1.443E-B1 -7.9559E-83 -2,05426-03 -2,8542€-83
.0000E+30 -1.7467E-81 1.7467E-81 0.0000E+20 3.4431E-03 -3.4431E-03
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-1.4962€-81 -1.7328e-81

0.0080E+D8  D.2J0BE+0R

6.2379e-82 2.3753E-01
0.0000E+28 0.0000E+00

-3.5011E-02 -9.7063E-01
.000Qe+20 @, 0000E+83

9.7758E-81  4.714BE-04
0.2000E+89 @, 0@0Qc+e

-3.1077e-33 -6.2808E-25
3.0008E+08 0. 0%20E+00

-2.9157E-82 -1,9973E-03
9.0008e+d0 ©.Q@00E+28

-2.0289E-04 -2.8382E-02
0.0800E+23 9.00Q90E+2Q

J.6117€-02 2.8127E-82
9.0009E+00 4.8000c+0d

1.9200E-81 1.3375€-82
2.0029E+20 Q.000E+08
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Appendix B3 (cant'd)

Mcdel S1ORS

Controllability Matrix

2.3370E-02 2.9472E-@5 7.771SE-B1
~B.5265E-11 1.2147E-18 -1.1231E-10

~2.6650E-81 -1.5615E-@2 -2.3874E-82
6.0766E-02 S.3Q14E-02 -3.4790E-02

~2.6650E-81 -1.5615E-82 -2.3874E-02
-6.8766E-02 -5.3014E-02 3.4770E-02

-1.9315E-02 -3.2494E-83 -9.187€E-01
-1.4236E-18  8.9197E-11 §.8874E-1{

-2.1379E-23 -4.6727E-34 1,7845E-02
-1.1457E-82 1.J061E-93 2,6127E-03

-2.15796-83 -4.6727E-34 1,7845E-02
1. 1457E-82 -1,3061E-83 -2, 6127E-33

1.7643E-81 -7.9939E-82 -1,B003E-22
-9.8616E-11 3.37B5E-18 -1.B444E-10

1.2607€-03 1.0258€-@3 2.30837e-01
-9.7488E-12 1.0BBRE-11 1,812(E-13

Observability Matrix

-3.91466-03 5.5223E-82 6,S5223e-82 -5.5B62E-87 -2.845QE-02 -2.8452E-02 ©.7748E-82 4,7145E-85
0.0030€+22 7.2493E-82 -7,2698E-02 9.0080E+2@ 7.1B37E-82 -7,13376-82 0.9200E+30 2.2000E+20

8.7144E-08 -1, 095BE-D4 ~1.B958E-04 I.4271E-97 -1.316BE-03 -1.314BE-83 -2.02B2E-84 -2,21B2E-82
0.2000E+29 -1.5859€-04 1,6859E-04 ©.J000E+9Q 5.273BE-24 -5.273GE-24 0.0000E+00 0.3Q00E+d3

14149E-82 1.B447E-@1 1, Q443E-31 -7.9959E-97 -2.0542E-05 -2.025426-83 1.920QE-91 1.3373E-32
2.0000E+30 -1.7467E-31 1,7467€-01 O.0000E+2Q 5.4431E-83 -3.4431E-67 4.0028c+00 2.2033E+00
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hpnendix B4

Modal Decoaposition far Model 528RS

Eigenvalues

~1,5184E-02 -3,9973E-02 -5.7@976-32 -1,.Q967E-81 -1.3143E-21 -1.2163E-01 -3,2738E-31 -3.3235E-81

2.0006E+00 0.0083E+32 9.3Q0QE+63 0.D0OEE+20 I.30B5E-01 -3.3RB4E-01

Eigenvectors

2.7516E-92 9.6999E-81 -5.5826E-81 -5.9448E-31 2.3704E-82 2.3784E-02
{. -1,

9.0200c+80 9.J000E+00 9.0000c+0@ 4.3a0@E+A8 (.7398E-82

-B.4155E-92 1.3467E-B1 -2,9B29E-Q1 -b.b733E-81 2.3921E-81 2.39Z1E-81
9.0000E+20 0.3090E+20 0.0402E+d9 0.0Q@0C+@Q 1,3983E-91 -1.3985E-A1

9.2800E+0@ 0.0a0BE+R0

2.2574E-02 -1.8B93E-8¢

3
7398E-22 0.0008c+2@ 4.0@00E+2Q

2.9231E-01 9.6823E-01
2.2000E+00 Q. 2020c+20

9.3412E-01 -1.854QE-01 7.7235E-M1 -2.6461E-81 B,4294E-91 8.4294E-0f -9,3751E-81 -1,2439E-81

2.0000E+00 @.2000c+20 O.0002E+Q0 0.0000E+2@ -3.43B6E-A1 3.43%6E-A

~8.6414E-35 4.92146E-04 -5.2254E-4 -3.5415E-03 -1.906E-82 -1.8904E-22
0.0820E+20 0.0000c+02 D.0000E+0 O.2300F+08 -1.2192E-31 1.8192E-B

5.B466E-27 -9.3867E-04 2.9494E-37 -1.23B2E-84 5.50Q2E-Q7 5.5002E-23
2.9009E+00 0.0000E+d7 Q.0008E+0Q 0.0000E+08 3.73@32-04 -I.733E-04

9.060GE-24 -1.8715E-03 1.735QE-93 3.7323E-03 1.5434E-07 1.5455E-83
¢.0008c+0d 0.200dE+Q0 0.0020£+30 0.0@00E+0@ 1.8937E-87 -1.8937E-03

0.2¢%0¢c+00 @.000dc+00

3.7359E-82 3.514BE-02
2.0000E+88 @.2000E+00

4.3789e-02 1,4220E-02
#.0008E+20 0.3000¢c+20

3.3164E-03 1, 9053E-02
0.0000E+32 0,2000E+30

-2.9824E-92 -2.5064E-03 -5,4512E-87 4.52436-02 -2,54B7E-01 -2.5487E-81 -1.2754E-81 -B.4999E-02

3.2029E+00  0.2000E+00 0.0002E+20 0.2000E+2Q 1.34@4E-D1 -1.34Q4E-01

=3 4436E-01  2,8443E-02 -5.2797E-92 -1.2540E-82 9.7445E-83 9.7445E-03
0.2200c+00 0.0000E+80 .00Q0E+00 9.Q000E+8 -3.25B6E-83 3.2686E-83
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d.20edc+02 4.@3000E+00

-1.2465E-01 -4,7381€-02

8.000ec+08 @.2900E+20
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9.3412E-02 -1.8543E-22
3.0000E+20 3.0008¢c+0¢

9.8608E-04 -1.8715E-83
3.0809E+20 0, 2008E+80

=3, 8436E-81  2.8443E-82 -5.2797E-92 -1, ZS40E-92

7. 7235E-82 -2.6461E-02
2.0000c+00  0.0d00c+00

1.7358E-83 3.7323E-03
0.0904E+80 9.0080E+29

Appendix B4 (cont’'d)

Model S20R5

Controllability Matrix

4,8721E-31 -4.4081E-083 -1.3848E-22
1,2372E-89 -5.5467E-18 -4.4475E-18

-9.4814E-91 ~2.1125E-91 -3.4301E+0Q
-5.3563E~10 5.5416E-18 -5.8413E-18

-2,7475E+0@ -5.9278E-81 -1.1337E+00
-B.4554E-18 1.5149E-39 5.2273E-19

8.8974E-81 2.5212E-31 -3.4519E+34
-3.4855E-10 ~4.4942E-18 -1.B16BE-29

—

.680E-91 1.8850E-83 -2.7789E-01
. 2245E-81 -2, 5434E-02 1. 8468E-21

—

1.3405E-91 1.885QE-83 -2,7789E-01
~1.2245E-01 2.6434E-82 -1.04L2E-01

-4,897QE-81 2.8629E-81 4.9265E-01
-1.1665E-11 -3.3707E-11 1.2161E-18

7.6633E-92 -4.46320E-82 -9.4790E-01
1. 1173E-10 3.9513E-12 -4.8438E-12

Observability Matrix

8.4294E-02 8. 4294E-02
=3.4306E-82 3.4306E-02

1.5436E-87 1.5456E-03
1.9937E-93 -1.9937E-85

M aend and s o ———

-9.3751E-92 -1, 2439€-82
0.8000E+08 0.2008E+00

3.3164E-83 1.90S3E-22
9.0020E+00 9,0080E+82

9.7445E-03 9.7445E-83 -1.2463E-01 ~4.7IBIE-0T

0.0000E+00 0.0089E+30 0.0000E+0 0.0000£+8@ -1.26@6E-33 3,26BE-23 2.2000E+9d Q.2000E+63
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Appendix BS

Modal Deccmposition for Madel

Eigenvalues

-1.379Q€-82 -5.2316E-02 ~5,S581E-82 -1.J479E-0! -1.5137E-81
D.2809E+20 2.0000c+80 3.000QE+Q0 D.2800E+A8 2.B421E-01

Eigenvectors

2.3608E-01 -9.6049E~01 -B.2566E-01 -4.2030E-91 b6.5875E-B3
§.0090E+88 0.9002E+00 3.0020E+30 0.Q080E+8@ I.9427E-82

-2,ZB85E-81 -2, {244E-@1 -3.71526-81 -6.0840E-31 3.1478E-82
8.8000E+30 9.0000E+29 9.2000E+30 0.2008E+BD 2,4393E-01

8.91B9€-81 1.7733e-81 4.219ZE-81 -4.BBBIE-01 9.3440E-31
.0000c+22 0.000QE+00 0.0000c+d0 O.p0eaE+dd -S.9677E-82

-1, 2736E-92 -8.4673E-04 -1.4691E-03 -8.1065E-33 1.98228-82
0.00R6E+20 9.2000E+32 0.0000c+20 9.0080E+2@ -7,8979E-082

4,78576-83 B.7878E-84 1.7415E-85 -4.3989E-84 4,2894E-83
D.990QE+20 8.0000E+20 D.Q000E+09 9.2000E+08 2,2474E-03

1.8472E-83 1.4Q98E-27 2,2594E-83 3.7002E-83 1,3B49E-83
9.3000c+00 0.0900E+0Q 0.Q200£+00 9.9309c+@@ 1.33226-03

-2.9714E-82 9.8923E-03 1.8@55€-92 7.588SE-82 -2,23BIE-31
,0000E+08 0.0089E+30 0.0Q00E+38 0.0000E+32 5.2374E-82

-3.3979E-81 -2,7825E-02 -4.0591E-92 -1,7234E-82 1.35026-82
0.5000£+00 9.9080t+20 0.0900E+00 0.DABIE+RD -7.3300E-34
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=1, 5137E-91 -4.2265E-81 -4.2265E-01
-2.84216-91 1.3732E-82 -1.37326-02

6.5875E-05 -1.15312e-81 -1.1512E-81
-3.9627E-082 2.6062E-82 -2.6062E-22

3.1478E-82 4.5827E-31 6. SM27E-M
~2,4393E-81 5.5980E-01 -5.3980E-91

9.3642E-81 6.9853E-22 o.9853E-02
S.8677E-02 -4.6114E-81 4.6114E-Q

1.98226-82 3.2418E-92 3.2410E-32
7.0970E-92 3.3291E-02 -5.I1291E-@2

4.2694E-05 3,35106-95 8.5510E-83
~2.2436E-083 3. 4444E-02 -3, 4434E-07

1.J049E-93 1.3528E-82 1.3528E-02
-1.3322E-83  9.9084€-83 -9.9844E-83

-2.2381€-81 -5.4217€-82 -5.4217E-22
~5.2374E-92 -1.3273e-01 1.3278E-81

1.3502€-32 -2.0993E-92 -2.0993E-92
7.3580E-84 -7.6633E-82 7.4833E-82

!
f
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F Appendix BS (cont'd) ]

Model SZSRS

. . Controllability Matriy -

6.2761E-21 -6.42T1E-83 4.8521€-92
-4.75Q1E-09 -3.B46TE-10 -B,7441E-09

4.7183E+08 1.0435E+00 7,0500E+00
-1.8903€-09 -3.9480E-89 -2,B645E-28 -

=7.1170£+08 -1,5909E+00 -3.8872E+80 f
1.5541E-89 S5.1546E-09 3.4B18E-08

2.1303E+82 6.7327E-81 -5.0141E+00
-1.B064E-89 -4,6893E-19 -5.5881E-29 -

3.2995E-81  7.6203E-93 -8.3275E-01
2.6104E-01 -3.5660E-82 4,1926E-01

3.2983e-01 7.6203E-83 -8,8275E-0!
~2.6108E-B1  5.5666BE-02 -4.1026E-31 -

3.9633E-01 -1.7981E-81 -1.1051E+09
S.3461€-81 -2,1888E-31 -3.6675E-31

3.9633E-01 -1.7981E-81 -1.1051E+08
-5.3461E-01 2.1888E-01 3.5673E-31 ) )

Observability Matrix

8.91B9E-82 1.7733E-82 4.21926-82 -4.8881E-02 9.3640E-82 9.3448E-82 6.9853E-93 6.9853E-83
0.2009c+80 0.0000E+30 Q.2300E+30 0.2309E+@0 -5.9477E-83 5.B477E-03 -4,6114E-02 4, A114E-82

1.9472E-03 1.M098E-03 2.2594E-83 3.7002€-97 1{.I049E-83 1.3049E-87 1.3520E-82 1.3520E-92
3. 0000E+20  0.0000E+32 9.0000E+20 0.9000E+00 1.3322E-23 -1,3322E-83 9.9004E-03 -9.9804E-33 Lo

-3.0879€-81 -2,7826E-02 -4.3571E-92 -1.7234E-02 1.35028-07 1,3502E-32 -2.8993E-82 -2.3993E-92
7.2000c+09 9.0000c+20 0.0000E+20 3.9009c+00 -7.3330E-04 7.33B0E-R4 -7.5633E-02 7.4033E-02

'
A a— A A
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h Appendix B84

Multivariable Ieros for all Models

Model SSRS

1. 5030E+07 1.0854E+87 1,5425E483 -8, 4543E-83 -4.2145E-82 -4.2145€-02 -0.J654E-02 -1.5421E+43
0.0000E+89 0.0000E+20 0.0000E+09 0.0900E+80 3.9774E-01 -3.9774E-81 0.0Q08E+80 0.02000E+8d

Nodel S1dRS

9.0004E410  T.0271E+84 -1, 47TBE-02 -7.4204E-02 -7, 4204E-02 -9.4508E-02 -3 4TT1E+E4 -3.4771E+04
5.00006+00  0.0000E+89 0.9090E+80 3.87226-91 -3.8722E-01 0.0000E+88 6.9715E+@4 -6.9715E+04

Model 52BRS

5.18826+06 2,S141E+84 -2.8452E-82 -1, 41B8E-91 -1.4168E-@1 -2,9274E-81 -2.5037E+84 -2.8294E+89
9.09006+00 0.090BE+0 0,0000E+8@ 3.2942E-01 -3.2942E-81 0.0000E+09 0.0000E+20 0.0900E+00

Madel SZ5RS

4. 12576492 -3.5092€-92 -1.7204E-81 -1.7204E-81 -2.5599E-81 -1.@9Q4E+03 -1, QTR4E+ET - 1. 2896E+04
~1.2806E+83 0.POBOE+B0 2.5989E-@1 -2.4989E-01 0.Q009E+Q8 7.9931E+@2 -7.9931E+82 0.0000c+M
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Appendix C

Sain Matrices and Properties of the Closed Loop
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5.0993E-01
5.63868E-01

1.1576E-02
5.6803E~01

4.145646E-03
5.30833E~02

8.17756E-01
1.3793€+00

8.5743E-082
1.6640E+00

1.8005E-82
1.3845€-01

1.44466E+00
1.7085E+00

3.8242E-01
2.3851€+00

7.08056E-82
5.2001E-02

1.7170€+00
1.7155E+00

4.1451E-01
2.3852E+@8

1.0841E-01
5.4931E-03

Appendix C1

Kalman Filter Gain Matrices

1.15756E-22
-4.7120€+01

3.2717E-01
2.6916E+01

-1.5101E-83
-3.8194€-01

8.5743E-02
-3.0833E+01

5.3248E-01
1.7290E+01

-5.2855E-03
-1.0776E+00

3.0242g-01
-1.9263E+01

9.2461£-01
8.35952E+080

-4.6849E-02
-2.4884E+00

4.1451E-01
~1.6714E+01

1.0844E+00
6.7242E+80

-9.15668E-02
-3.3726€+00

Model SSRS

4.14566E-03
-2.3271€-81

-1.5101E-83
4,2244E-01

1.5507E-01
-4,.7611E+00
Model

{.B8005E-02
~-5.9833E-01

~5.2855€E-03
B8.3443E-~81

2.8319E~-01
-4,B471E+00
Model

7.08806E-02
~1.3339E+00

-4.46849E-982
1.6947E+00

S5.6766E-01
~-5.8834E+00
Model

1.0841E-01
-1.7102E+80

-9.1668E-02
2.1371E+09

7.8799E-01
-5.3772E+20

1.9263E-0@3
-7.6189E-0@1

-4.5847E-04
-4,4450E-01

1,9535E-03
~-2.9808E-02
S10BRS

1.7874E-03
-7.1770E-01

-5.8788E-04
-3.7143E-01

2.0265E-03
-2.8398E-02
S20RS

2.0844E-83
-6.3832E-01

-3.7150E-24
1.71086E-01

2.18108E-03
-b.4319E-02
S25RS

2.4834E-83
-6.2142E-01

1.1144E-04
3.4577€-81

2,2573E-03
-1.3167E-01
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-6.8896E-03
=7.75@4E+00

-1.8951€E-082
5.2359E+00

1.3183E-02
-8.5289€-02

-8.3415E-03
~7.4749E+80

~2.1142E-02
6.1774E+00

1.3008€E-02
~2.5462E-281

~9.04435E~03
~6.9217E+20

-3.2851E-02
6.9342E+00

1.4902€-~02
~1.2384E+00

-1.2226E-02
-6, 4887E+020

-1.92456E-02
7.08179E+20

1.6466E-02
-2.0380E+00

-5.6597E-01

-6.9427E-01

-1.1124E-82

-6.22146E-01

-6.5491E-01

~-1.,5523E-02

-6.60804E-01

-6.0270E-81

-7.3951E-83

-4.7828E-08!

-5.8804E-0!

-1.1336E-03




fppendix C2

Control Gain Matrices

-1.0918€-02
-1.4786E-01
-1,3888E-01
-2.08376E-02
-2,5016E-01
3.6744E-01
2,0608E-04
1.1480E-04
4.3158E-83
-4.6205E-04
2.3112E-03

-6.3100E-@3
-1.17086€-01
-1.1104E-01
-4,2047€-02
-4,0679E-01
4,7272E-01
9.9992E-04
3.8493E-05
6.5458E-083
-3.2026E-04
2,1223E-83

Model S3R3

-5.9555€e-02
-4,9755e-@2
-9.8459£-01
2.1793E+00
-2.2573E+20
4.3158E-082
1.2104E-03
1,2587E-04
3.31256-02
1.5528€-02
8.1370E-03

Model S1@RS5

-2.9297e-02
-1.8929€-8!
-6.B330E-01
3.56708E+00@
-3.2997€+00
6.5458€-62
5.02526-03
-9.8181E-04
4,2779E-92
4,.5913E-02
1.0618E-02

-5.0536E-02
4.0134E-02
-2.4442E-01
3.7016E-082
-6, 4614E-81
2.3112E-02
b.4495E-84
1,2895E-04
8.1370E-03
4.8522E-03
4,0875E-02

-2.1827E-92
-2.3457E-03
-1.6812E-01
4.1904E-01
-9.97656E-01
2.1223E-02
1,8244E-83
-1.6970E-04
1.0618E-02
1.5766E-02
5.1121E-082
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Appendix C2 (cont'd)

Control Gain Matrices

-3.08768E-084
-9.,9578E-02
-5.2549E-082
-4,@965E-01
-4,7391E-82
b.1100E-01
3.8992E-83
-5.6741E-05
5.4639E-83
-3.9308E-02
8.5040E-04

2,3797€E-03
-9.5498E-02
-3.4741€-02
-1,1024E+20
3.4893E-81
7.7970€-01
3.2007€-83
?.6791E-024
3.5628E-03
-1.1216E-01
4,74694E-83

Model S20RS

1.8691E-22
-3.1810€-21
-4.0681E-01
6.7544E+00
-4.65661E+00
5.4639€-082
2.8093E-82
-1,0044E-02
5.0574E-082
1.66935E-01
8.1331E-83

Model S25R3

3.34659E-02
-4,4344E-01
-3.1467€-081
8.0306E+00
-4,6157E+00
3.5628E-02
4,8469€-02
-1.7839€-02
4.6331E-082
2.4663€-01
2.2212E-04

-2.647BE-03
-4.3207E-02
-5.9456E-02
1.5694E+00
-8.8528€-01
B.5040E-03
3.50858E-83
-1.5228E-03
8.1331E-83
3.6961E-02
5.8230E-02

-3.7276E-83
-5.8065E-03
-5.7352e-84
1.5822E+00
-4,8207E-82
4.7694E-02
-4,5731E-83
1.5633E-D4
2.2212E-84
1.7557E-082
5.7978&E-82

Ry —p—
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-7.6489E-01
-3.9014E-01
-3.5318E-01

7.7616E-81
-3.4961E-01
8.0000E+00

3.3022E+02
-2.B652E-02
-1.4188BE-81

6.5489€E+02
2. 0280c+00
-3.2942E-0t

Appendix C3

Poles of the Closed Loop Model

-7.4489E~01
-1.36056E-01
-2.0624E~01
-2.8649E-02

-7.746156E~-01
3.3397E-01
0.2020E+00
0.0000E+00

Real

-4.2486E-01
-1.3606E-01
-1.2874E-01
-1.3831£-02

Part

-3.1043E-01
-1.35198E-01
~5.7009E-02
-1.3831E-82

Imaginary Part

9.0000E+00
-3.3397E-81 3.2898E-01
0.0000E+20 S5.1976E-02
6.1984E-83 -6.1984E-03

4,.5795E-01

~3.1063E-01 -3.9014E-21
~1.5198E-81 -3.2827E-01
~5.7009E-02 -5.7204E-82
~4.6457E-02

-4.5795E-81 3.4961E-D1
-3.2898E-81 0.0000E+00

-5.1976E-82 ©.0008E+020
0.0000E+00

Zeros of the Closed Loop Model

3.3022E+02
~9.0911E-02
~2.0274E-01
~5.3055E+@1

-6.5409E+82
2.2588€-082
8.0000E+00
0.03008E+020

Real Part

1.73580E+@2 5.2209E+01
-9.0911E-02 -1.3101E-@!
-3.2524E-81 -3.4898E-01
-8.8860E+01 -B.8BLOE+D1

Imaginary Part

0.0000E+00
-2.2508E-82
2.Q0000E+00
1.52808E+02

- 133

0.0000E+80
3.07346E-01
0.0000€+09
-1.5280E+02

-1.7678E-02 -1.7678E~02
-1.3101E-81- 1.4188E-0!
-4,2233E-01 -4.2234E-D}
-8.1248E+02

3.0012E-83 -3.0012E-03
-3.0736E-81 3.2942E-01
5.2639E+@1 -5.2639€+01
2.2000E+00




Appandix D -

Gain Scheduling Algorithm and Coefficients

The program in appendix D1 is written in Fortran 77 for
the Microsoft compiler. It should run on any computer
- having a Fortran 77 compiler with modifications required

only for the input/output statements.
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Appendix DI

Fortran Program to Produce the Bain Scheduling Coefficients

prograa matlsq

parabalic least squares fit with order of polvnomial taken
as input from the console (max order = 3)

adapted from the Fortran proagram by Alan R, Miller

this version handles matrices up to 11 x 11

integer maxr.maxc,lines,nrow,ncol ,matr,matc,maxsiz
real x(5),ymat(11,11,5),y(5)}

real coef(11,11,5),correl.c(4)

character#! answer

character#13 fnaae(3), dskfile. prnfile
character#4B title

common /sizes/ nrow.ncol,.matr .matc

common /files/ fname

data maxr,maxc,maxsiz/5, 4, 11/

write(#*, (A)') * Specify title for this run: (6@ chars)’
read(*,103) title
call input(x,vymat,maxr,maxc,maxsiz)

———r——p— —————

Now do the least squares fit, storing the ncol coeff’'s for the
i,J term in the matrix coeff(i,j,k) for k=1 to ncol. Store the
carrelatian coefficieat in coeff(i,j.ncol+l).

YT

anNn NN nNn

10

15

20

do 28 i=1,matr
do 28 j=t,matc
do 18 k=1,nrow
y{k) = ymat(i,j.k)
call linfit(x,y,c.correl,maxr,maxc)
do 1S k=1,ncol
coefli,j, k) = c(k)
coef(i,i,ncol+l) = correl
continue
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Appendix Dl (cont’'d)

Fortran Program to Produce the BGain Scheduling Coefficients

Determine what type of output is des.red

write(#, (A\) ') ' Write coefficients to output device? (Y/N)
read(#,100)answer
iflanswer .eq. 'y’ .or. answer .eq. ‘Y') then
write(#,'(A\)') ' Disk #ile for Draper? (Y/N)
read(#,188)answer
if(answer .eq. 'Y’ .or. answer .eq. 'v’')then
write{(#, " (A)’) ‘' Enter the output filename:
write(®,'(A)’) ° (examples ' ‘bicoeff.dat’ ')’
read (% #) dskfile
write(#, (A)’) ' Writing autput file........
open(7, FILE = dskfile, STATUS = 'NEW')
write(7,1084) title

+

write(7,°(A)") * ($irst coeff is the constant tera)’

do 38 i={,matr
do 38 j=t,matc
write(7,10%)i,j,(coef(i,j, k), k=1, ncol)
write(®, (A)") " °
close(7)
endif
write(#, (A\) ') ' Disk file for printing? (Y/N)
read(#*,100)answer
if(answer .eq. 'Y’ .or. answer .eq. ‘v’)then
write(®, (A)‘) * Enter the output filename:
write(®, (A)') ' (example: '‘dicoeff.lst’'’)’
read(*,#*) prnfile
write(#, (A)°) * Writing output file.seeeees’
openi{8, FILE = prnfile, STATUS = 'NEW')
write(8,104) title
write(8,181)
do 35 i=1,matr
do 33 j={,matc
write(8,102) i.j.coef(i,j,ncal+l),
1 (coef(i,j.k),.k=1,ncol)
close(8)
endif
endif
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Appendix D1 (cont d)

Fortran Program to Produce the Gain Scheduling Coefficients

tormat(al)

foresat(’ element’'.3x, correlation’,3x, .
‘coefficients(low order to high arderi /i

format(’ (',i2,'y ¢i2.') " 3x,018.4,3%x,51e10.4,2x))

format (as0)

format(’' °',asld)

format (2x,12,1x,i2,1x,012.6,2x,012,.6,2%,012.6,2x,812.4)

end

subroutine input(x,ymat,maxr,maxc,maxsiz)
integer nrow,i.maxr,maxc,ncol,matr ,matc,mansiz
real x(5),ymat(11,11,5)

character#*13 fname(35)

common /sizes/ nrow.ncal,.eatr,matc

common /files/ fname

write(%, (A\)’) * Order of polvnomial to use?
read(#,#jncol
if(ncol .gt. maxc-1)goto S
if(ncol .1t. 1) stop
ncol = ncol+l
write(#,°(A\)") ° Number of speeds? °
read(*.#)nrow
if(nrow .1t. ncol .or. nrow .gt. maxr)goto 1@
write(#, (A)°) ° Enter the speeds and corresponding filenames:
write(#, (A)’) ' (example: 2@8.8 '‘b:abghc.s20 ')’
read(#,#) (x(i),fname(i), i=1l,nrow)
write(#,'(A\)’) ' Specify matrix dimensions: (row,col)
read(+,%) matr.matc
if(matr .qt. maxsiz .or. matc .gt. maxsiz) qoto 15
write(®,’(A)°) * Reading input matrices:.eeesceasse’
do 2@ i=il,nrow
open{i, FILE = fname(i))
read(i,108) ((j,k,ymat(j,k,i), m=1l,matc), n=1,matr)
close(i}
continue
write(#,101)
return
format (Ix,12,1%,i2,1x,e16,10,1%,i2,1x,i2,1x,216,.10,
Ix,i2,1x,i2,1x,e15.10)
format('B’)
end
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Appendix Dl (cont'd)

El Fartran Program to Produce the 6ain Scheduling Coefficients

subroutine linfit(x,y,coef,cor,maxr,.maxc)

logical error

integer nrow,ncol,i.j.maxr.maxc,matr,matc
i integer index{5,5),nvec

real x(1),y(1),coef(])

real a(5,5),xmatr(5,9)

real sumy,sumy2,xi,yi,yc,res,cor,srs

common /sizes/ nrow,ncol,matr,matc

data nvec/1/

do 19 i=1,nrow
xi = x(i)
imatr(i,1)=1.0
do 10 j=2,ncol
xmatr{i,})= xmatr(i,j=~1)#xi
10 continue
call square(xmatr.y,a,coef,maxr,saxc)
call gaussjl(a.coef,index,nvec,error,maxc)
sumy = 0.0
suay?2 = 0.8
srs = 0.0
do 20 i=1,nrow
vi = v(i)
yc = 8.0
do 15 j = 1, ncol
15 yc = yc + coef(j) # xmatri(i,j)
res = yc - yi
§rs = Srs + res#res
sSumy = suay + vyi
sumy2 = sumy2 + yi # vyi
20 continue
c take care of the case where the y(i) are all zerao
c this is guaranteed to produce zero coefficients so cor = {.Q
if(suay .eq. 0.8) then
cor = 1,0
else
cor = sqrt(l,.8-srs/(suay2-suayssumy/nrom))
endif
. return
end
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Appendix D! (cont d)

Fortran Program to Produce the Gain Scheduling Coefficients

subroutine square(x,v.a,g.maxr,maxc)

integer nrow,ncol.i,k.l,matr matc,maxr.maxc
real x(maxr,maxc),yi{maxr),a(maxc,maxc),qg(maxc)
common /sizes/ nrow,ncol ,matr,matc

do 48 k=1,ncol
do 20 I=1,k
alk,1)=0.0
do 18 i=l,nrow
alk,I)=alk,1)+x (i ,1)#x (i, k)
if{k .ne. 1) all, k) = atk, 1)
continue
continue
atk) = 8.0
do 3@ i=1.nrow
glk)=g(k)+y{i)#x (i, k)
continue
continue
return
end

subrautine qaussjlb,u,index.nvec,errar,naxc)
logical error

integer nrow,i,j.k,l,nvec,matr,matc,maxsiz,maxc
integer irow,icol,l1,index (maxc,3}

real bimaxc,l),w(maxc,1),big,sum,t,pivot,detern
common /sizes/ nrow,ncol,matr,matc

error = .false.
n = ncol
do 18 i=1,n
index (i,3)=0
continue
deters = 1.0
do 99 i=i,n
big = 8.0
do 20 j=1l.n
if(index(j,3) .eq. 1)goto 20
do 15 k=1,n
if(index(k,3) .qt, 1)gato 199
if(index{(k,3) .eq. 1) goto 15
if(abs(b(j,k)) .le. biglgoto 15
irow = j
icol = k
big = abs(b(j.k))
continue
continue

—-——
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Appendix D! (cont’'d)

Program to Produce the Gain Scheduling Coefficients

index (icol.3) = index(icol.3) + 1
index{i,2) = irow
index(i,1) = icol
if(irow .eq. icol)goto 49
determ = -detern
do 25 1=1,n
call swap(b(irow,l),b(icol.l))
continue
if(nvec .eq. @)gato 40
do 38 1=1,nvec
call swap(w(irow,1) . .wlicol,1))
continue
pivot = b(icol,icol)
determ = detera#pivot
b(icol.icol)= 1.8
do 45 1=1,n
b(icol,l)=blical.l)/pivot
continue
if(nvec .eq. @)goto 6@
do 5@ 1l=1,.nvec
wl(icol,l) = wlical,l)/pivot
continue
do 80 1i=1,n
if(l1 .eq. icol)goto B@
t = b{ll,ical)
b(li,icol) = 0.9
do 65 1l=1,n
b(l1,1) = b(l1,1)-b(icol,1)*t
cantinue
if(nvec .eg9. @)goto 80
do 70 1=1,nvec
will,1) = will,1)-w(icol,1)#t
continue
continue

9¢ continue
do 120 i=1,.n

110

1 =np -1 ¢}
if(index(1,1) .eq. index(l1,2))goto 120
irow = index{(l,t)
icol = index(1,2)
do 118 k = !,n

call swap(b(k,irow),b(k,icol))
continue

120 continue
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Appendix D1 (cont'd) ]

Fortran Program to Produce the Gain Scheduling Coefficients =

4

s do 130 k=1.n ._;

;Q if{index{k,3) .ne. l)goto 199 ]

" 130 continue L

_ - return —

199 write(#,999)

error = ,true. J

L return ]
' 999 format (' ERROR - matrix singular’)

end

subroutine swap{a,b)
real a,b,hold

hald = a

a=b

b = hold

return

end
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Appendix D2

: A-BG-HC matrix coefficients i
S coefficients
. element correlation (low order to high order)
h - ( 1, 1) . 9999E+08 -. 1594E+@80 -.683S5E-Q1 « 2494E-03
(1, 2) « 9996E+00 .6212E-01 -~.1287E-@81 -.2528E-@3
. (1, 3 . 1000E+Q1 .23I3IIE-02 -.4777E-@3 -.1583E-03
‘ (1, 4) - 99968E+Q0 -. 2230E-02 .7932E-04 -.3585SE-@S
1 ( 1, 5) « 9479E+00 .7586E-02 -.1184E-@3 . 1153E-04
h (1, & . 9972E+00 . SO33IE+00 .1461E-01 -.3083E-03
- (1, 7) . 9850E+Q0 «31642E+00 -~.2128E+Q0 . 5342E-02
(1, 8) . 995S4E+Q0 .4S08E+02 -.4195E+01 «92159E-01
(1, 9 . P999E+20 -.5577E-01 . &878E-01 - 2617E-04
( 1,1 . 9987E+Q0 -8225E+00 -.1267E-01 - 1820E-@3
3 ( 1,11) -« 9999E+00 .8144E+01 ~-.7023E-01 .4817E-@3
- ( 2, 1) » 9996E+Q0 .6212E-01 -.1287E-Q1 -.2528E-@3
r ( 2, 2) - 9999E+00 -.95SB8E-01 ~-.4723E-01 . 3Q33E-03
( 2, 3) « 7995E+00 «1423E-01 ~-.3771E-02 « 2736E-03
[ ( 2, 4) - 9966E+00 . 7009E-04 .9534E-04 -.4Q082E£-05
- ( 2, S) « 9954E+Q0 « 2375E-@2 .1945E-02 -.1984E-24
( 2, &) « 9999E+00 .7592E+00 -.1101E-@1 . 1825E-@83
( 2, 7) « 9968E+Q0 . 7432E+@0 -.3Q&LIE+Q0 .« 7306E-Q2
( 2, 8 « 9985SE+Q0 -.3801E+@2 .2533E+01 -.517@E-01
( 2, 9) . 1000E+01 -.1555E-81 ~.7298E-01 « 2372E-03
( 2,1 - 9921E+00 .S5849E+00 -.1893E-01 -.8110E-03
( 2,11) « 997 6E+00 —-.4239E+01 ~—.2394E+00 «5186E-02
(3, 1) . 1000E+01 .2333E-02 -.4777E-03 -.1583E-03
(« 3, 2) « 9995E+00 «1423E-01 -~-.3771E-02 « 2736E-03
( 3, 3) . 9999E+Q00 -.2442E-01 -—-.2536E-01 -.B143E-04
(3, 4) - 1000E+01 ~. 1879E-02 -.1460E-04 ~.2144E-07
( 3, & . 9984E+00 -.1373E-01 .1785E-03 -~.1159E-04
(« 3, &) « 9912E+00 . 2321E-01 «.B32BE-03 —.64256E-04
g ( 3, 7) « 9227E+00 «2195E-01 -.2131E-01 « B262E-03
] (3, 8 - 1000E+01 « 2034E+00 « 6213E-01 « 2590E-@2
] (3, 9 « 9992E+00 «6111E+Q1 ~.B634E-01 . 2780E-02
( 3,10 » 9952E+00 . 63868E-01 -.8520E-02 . 4451E-@3
: ( 3,11) « 9999E+00 «4404E+00 -.4512E-01 .4371E-02
( 4, 1) « 9998E+Q0 «1433E-03 ~-.8452E-04 -.2997E-04
ﬁ ( 4, 20 - 7998E+00 «A1Q6E-03 -.2215E-03 -.7572E-04
* ( 4, 3) « 9998E+00 . 1652E-02 ~.89@9E-03 -.3044E-03 ,
{ ( 4, 4) « 9998E+Q0 -.1616E-02 -.1360E-02 . 4314E-06 -
’ ( 4, 3 « 9994E+00 ~-.8778E-03 -.2140E-02 « 9642E-@5
( 4, &) « 9907E+00 «3420E-01 -.7847E-02 .4101E-03
( 4, 7) « 9994E+00 -.7685E-03 -.1833E-02 .7781E-0S
( 4, 8) « 9958E+00 -. 4556E+00 «1450E+08 -.B8371E-02
(4, 9 « 9967E+@D -.3614E+080 -.5120E-01 «&4185E-@3 ‘
( 4,10) « 1000E+01 . DODOE+Q0 . 2000E+20 . 00O0E+00 -
( 4,11) « 7846E+00 «7706E+00 -.1587E+Q00 « 24862E-Q2
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Appendix D2 (cont’'d)

A-BG—HC matrix coefficients

coefficients
element correlation (low order to high order)
(S, 1) . 1000E+01 . B000E+QQ . 0000E+00 - 2002E+Q20
( S5, 2) - 1000E+@1 . 00B2E+00 . 0000E+20 . 2002E+00
( S, 3 « 9998E+Q0 -.2143E-01 . B462E-B2 - 2433E-02
( 5, 4) - 1000E+01 « SDLLE-D3 . 2370E-03 - 1173E-@5
(S5, 5 « 9997E+00 -.5286E-02 -.4884E-02 « 7536E-Q5
( S5, & « 9998E+Q0 -« 1165E-01 . 1008E-P1 -.4830E-03
(S5, 7} « P66 6E+00 .1818E+00 -—.1226E+00 - 4071E-02
( 5, B8) « 9735E+Q0 -. 14S56E+00 «.6308E-A1 -—-.2428E-Q2
(S, 9 . 10@0E+01 .1911E+00 -.S891E-01 -.8543E-02
( 5,1@) -« 9987E+@0 . 1214E+Q@Q .2518E-02 -.13@4E-@3
( S,11) « 9870E+20 -. 2566E+00 «2130E+00 -.B00OE-02
( 6, 1) « 9998E+Q0 .16868E-01 -.6976E-02 -.2069E-02
( 6, 2) « 9998E+00 .8178E-02 -.4408E-02 -.1507E-02
( 6, 3) « 7998E+QQ .4192E-@7 -.2261E-07 -.7728E-08
{ 6, 8) « 9987E+00 -.2842E-03 .14586-04 -.3137E-0S
( 6, 3) « 9952E+00 « 4256E-02 -.9237E-03 . S5646E-04
( 6, &) « 9998E+00 -.35643E-@1 -.4365E-02 -.6024E-04
¢ &6y, 7) « 7994E+00 -.4944E-P1 -.1435E+00 - 3339E-B3
( 6, 8) « 7997E+Q0 « 3O99E+00 .3689E+0@ -.4837E-03
( 6, 9) « 7990E+00 «4949E-01 -.3453E-01 . 1872E-@2
( 6,10) . 1000E+081 . DOBIE+00 . 0000E+20 . 0000E+00
{ 6,11) .B381E+00 -.5165E-01 . 7623E-02 -.2888E-03
(7, 1 . 1000E+01 . 00Q0E+00 . 0000E+00 . D020E+00
( 7, 2) . 1000E+081 . 0000E+20 . 000GE+0a . 0080E+20
( 74 3) . 9998E+00 -« 2036E-03 .1237E-03 «4434E-04
_ ( 7, 4) « 9613E+00 .6191E-04 -.2197E-04 . B259E-046
- ( 7, B . 1000E+01 -.5781E-03 -.3009E-03 -.3488E-05
i ( 7, &) « 9782E+00 «6719E-03 -.2997E-@3 . 6828E-05
. ( 7, 7) . 9998E+00 -.1383E-81 -.1407E-Q1 -.5S896E-05
F ( 7, 8) « 984 7E+020 «7534E-01 -.4371E-01 « 9755E-03
4 (7, 9 . 9972E+00 - 308IE-01 -.1128E-01 « 4921E-83
( 7,1 « 79A7E+00 -. 1493E+00 -.3097E-02 « 1606E-03
( 7,11) - 9774E+Q0 . 1430E-01 -.3452E-02 « 1564E-03
( 8, 1) « 9998E+00 -4363E-03 -.173SE-03 -.5014E-04
A ( 8, 2) - 7998E+00 -.7851E-04 . 84234E-Q4 . 1447E-04
P ( 8, 3 - 9998E+00 -. 13B3E-@7 « 7456LE-08 « 2549E-08
[ (a8, 4 « F998E+00 -.1422E-05 -.1105SE-@S -.2545E-07
g (8, 5 « 9973E+00 -.2191E-04 . 7257E-@S -.4019E-0@6
({ 8, &) « TP64E+D0 -. 6585E-04 «S711E-04 -.919BE-06
( 8, 7) « 7994E+00 -.4591E-03 -.1105E-02 .4811E-@5
( 8, 8) . 9996E+00 -.1866E-01 -.1386E-01 -.1341E-04
(8, 9N - 9712E+0Q -.2680E-02 « I3S56E-03 -.1202E-0@5
( 8,1 . 1000E+01 . DOBRE+00 . DO0RE+Q0 . 0QCE+00
( 8,11) «B1646E+00 -.45@7E-@2 «3768E-03 -.1089E-04
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element

o N o N e XaReNaXalal o Wal
-

1
2)
3
4)
)
&)
7)
8)
9)

9,10)
( 9,11)

(10,
(1@,
(10,
(1@,
(1@,
(10,
(18,
(10,
(1@,

1)
2)
3)
4)
S)
&)
7)
a
)

(10,1@)
(18,11)

(11,
(11,
(11,
(1,
(11,
(11,
(11,
(11,
(11,

1)
2)
3)
4)
S)
6)
7)
a8)
?

(11,1@0)
(11,11)

Appendix D2 (cont 'd)

A-BG-HC

carrelation

. 1000E+01
« 1000E+01
« 9998E+00
« 7999E+00
« 7999E+00
« 9919E+00
« 7998E+00
« 7968E+00
« 9997E+00
. 9907E+00
« 9929E+00
-« 1000E+01
. 1000E+21
- 1000E+01
. 1000E+01
. 1000E+01
« 9931E+00
« 1$00E+S52
« 9787 1E+00
« 9994E+00
« 993SE+@0
. 9883E+00
- 1000E+01
« 1000E+01
. 1000E+01
. 1000E+Q1
. 1000E+01
. 8302E+00
-« 1000E+01
« 9926E+00
« 7999E+00
« 7996E+00
« 7979E+00

. B0Q0E+20
. 00Q0E+00
« 57468E-83

-. 3588E-05
-. LDBRE-04
-. 1029E-083

« 6898E-082

-.3057E-81

. 2412E-03

-. 1026E-02

. 0Q0BE+00
. 0002E+020
. 0000E+00
. 00002E+20
- 00Q0E+00
- 3843E-02
. 1000E+31
«6741E-01

-.1109E+00
-.1125E-08

- 1915E-a1
. 0000E+20
- 0000E+00
- 0000E+Q0
« 0000E+00
. 3000E+Q0

-.587@E-Q@3

« 0020E+Q0
» 9916E+00
«1218E-01
» 7924E-@3

-.26828E-021
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matrix coefficients

coefficients
(low order to high

- DOPRE+00
« 3000E+00

-« 2201E-03
-. 5@43E-05
-.4190E-04
-.8578E-04

. 8453E-04

-. 1812E-02
-. 1769E-01

« SAO3E-25

-.1709e-02

- D00BE+20
- 0000E+Q0
- 2000E+Qa
. 0222E+20
- 0002E+00

-« ?352E-03

- 3002E+Qa

-. 1600E-01

- 2537E-0Q1
« 2765E-09

~. 6268E-02

« 0002E+00
« 2Q0QE+00
« 0000E+Q0
« 2000E+20
. B000E+00
. 7487E-D4
. 00@0E+20
. 2057E-02

-.4383E-02

«1129E-82

—. 2926E-02

vvvvvvv

order)

. D222E+00
. 0002E+00

-. 61746E-04
-.6170E-@8
-.1457E-86

« 3225E-05

-.2108E-04

« 1082E-83
« 9496E-04

-.2594E-06

«6912E-04
- 0000E+0Q
. 2000E+00
. 2000E+00
. DORRE+D0
. 20G0E+00
. 4867E-04
« 0000E+20
. BO39E-03

~.24135E-02
-.1371E-10

« 1176E-03
. B00RE+00
. B00RE+20
. 0000E+20
. DDORE+DD
- 2000E+00

=+ 2739E-05

- 0Q00E+22

-. 1105E-@3

« D5224E-03

-« 1651E-0@5

« G999E-04

N N

J SN




-

element

P SN N SN PN PN N PN PN NPT NN NN PPN NN PN

1, 1
1, 2
1, 4
1, S
1, &)
1,
1, 8
1, 9
1,1@)
1,11)
2, 1)
2, 2)
2, 3
2, 4
2, 5
2, &
2, 7)
2, &
2, N
2,1@)
2,11)
3,
3, 2
3, 3
3, 4
3,
3, &
3,7
3, @
3, PN
3,1@)
3,11)

Appendix D2 (cont’'d)

6 matrix coefficients

correlation

« 7999E+00
« 9996E+00
. 1000E+01
« 9996E+00
« 9479E+00
- 9972E+0@
. 9850E+00
« 9954E+00
« 9999E+D0
« 9987E+00
« 9999E+00
« 9996E+00
« 7999E+00
« 9995E+00
« 9966E+00
. 9954E+00
. 1000E+01
« 9968E+00
« 9985E+00
- 1000E+01
- F921E+00

. 9982E+08

.- 1000E+01
- 9995E+00
« 9999E+00
« 1002E+31
« 9984E+Q0
. 9820E+00
« 9227E+00
- 1000E+01
- 9955E+00
« 9952E+00
« 1000E+21

« 1694E+00
-.6212E-01
- 233JE-02

« 2230E-02
-. 7584E-02
- J162E+00
- &SOBE+Q2

. 1S518E+00
-, 8225E+00
-.B05S8E+01
-.6212€-01

. 7588E-~01
-. 1423E~-01
-~. 7009E-04
- 237SE~02
-.7411E+00@
- 7432E+0Q

. S801E+02

. 1813E-01
~.9869E+00

. 4116E+01
~-, 2333E-22
~.1423E-01

« 28462E-01

. 1879E-02

«1373E-@1
- S6P1E-02
- 2034E+00
-.4802E+01
-.6388E-@1
-.1199E+00
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cogefficients
(low order to high

- 6835E-01
. 1287E-01
-4777E-03
-« 7932E-04
. 1184E-03
-. 1469E-01
«2128E+00
«4195E+01
-. 7652E-01
- 1267E-01
« 6203E-01
. 1287e-01
- 4723E-01
«3771E-02
-. 2534E-04
« 18023E-01
« 3DLIE+D0
-.2533E+01
« 7974E~-01
. 1893E-01
« 2580E+00
- 4777E-83
«3771E-02
« 2536E-01
- 1460E-04
-.1785E-03
-.1567E-02
«2131E-01
-.6213E-01
«1219E-01
. 8520E-82
« 2822E-01

order)

~-.2494E-03
« 2528E-03
. 1583E-03
. 3585E~-@S
-.1153E-04
. 3090E-Q3
-.5342E-@2
-. 9159E-01
. 7580E-04
-. 1820E-23
-.2832E-03
« 2528E-03
-.3033E-02
~. 2736E-03
- 4082E-05
- 1984E-04
-. 1646E-03
— 7306E-02
.S5170E-01
» 2015E-03
«8110E-03
-.5719E-02
« 1583E-83
-. 2736E-@3
.8143E-04
« 2144E-Q7
. 1159E-04
. 7093E-04
-.8262E-03
~. 2590E-82
-. 1385E-@2
-.4431E-03
-. 4200E-02




L4

i coefficients

- elament correlation (low order to high order)
(1, 1) « 9999E+00 -.1391E-01 . 8202E-03 -.6807E-0S
(1, 2) « 7999E+00 -. 9601E-01 «77446E~-02 -.1019E-03
(1, 3 « 997 6E+D0 -.8577E-01 « B209E-02 -.1985E-03
( 2, 1) «9911E+00 -. 1806E+00 «779QE~-02 -.1782E-@3
( 2, 2) « ?997E+00 = 2579E-02 -.6763E-02 -.4A3B7E-03

E ( 2, 3 « 9815E+00 « 1236E+00 -—. 18463E~-01 « S326E-A3
(3, 1 « 9988E+Q0 -« 17S52E+00@ «7341E~-02 -.4LL87E-04
( 3, 2) « 997SE+00 -. 1309E+01 «78416E~-01 —.1394E-02
« 3, 3 « 9974E+00 —~. 3206E+00 «1690E-01 -.1708E-03
( 4, 1) « 9921E+00 -.3611E+00 «8359E-01 -.4474E-02

- ( 4, 2) -« 7998E+00 « 489SE+00 «33IBBE+0@ -.1437E-02

[ ] (4, 3 - 7848E+00 -~.7704E+00 - 1587E+00 -.2442E-02
(S5, 1) « 7978E+20 «4290E-01 -.7944E-01 « 36BLE-02
( 5, 2) « 9983E+08 -.70Q09E+00 -—.3402E+00 - 7286E-02
( 5, 3 - 9870E+00 «-2508E+00 -.2115E+00 « 7923E-02
( 6, 1) -« 7903IE+00 « I376E+D0 « &6572E-02 «4228€£-03

- ( 6, 2) - 7804E+008 « 1273E-01 « 7745E-02 -—.27S4E-03

. « &, 3) - 8302E+20 -3879E-@1 -.7487E-02 « 2739E-03

. ( 7, 1) - 9561E+00 ~-. 2202E-02 «4746E-03 -.9889E-0S
( 7, 2) - 1009E+01 «3J4SE-02 -.96Q4E-03 « 1104E-03
( 7, 3 « 8933E+0Q@ -.7854E-22 «1677E-02 -.6174E-04
(8, 1) « 2153E+@0 « 9755E-03 -.1880E-@3 « 73408E-0S
( 8, 2) « 1000E+01 - PIILE-O3 - 4378BE-03 -.4459E-04

i (8, 3 - 7781E+Q@0 .2180E-02 -.421SE-03 «1319E-04
( 9, 1) . 7804E+00 - 1273E-02 «7745E-03 -.2754E-04
( 9, 2) « 9983E+00 « 179GE-Q1 « J46L0E-02 -.9251E-04
( 9, 3) « 9929E+00 -1014E-02 «1712E-02 -.6928E-04
(14, 1) « 793 1E+00 ~.3843E-01 « 93IS2E-02 -.4867E-03

- (18, 2) « 7998E+00 ~-.2817E-02 . 1807E-02 « 3286E-03

b (18, 3 « 2140E+00 ~.2804E-01 «6996E-02 -.2021E-03
(11, 1) . 8302E+00 «9870E-02 -.7487E-03 «2739E-04
(11, 2) « 9929E+Q0 «1014E~-382 «1712E-@2 -.6928E-04
(11, 3 « P2979E+00 «» 28209E-01 « 2926E-02 -—.6999E-04
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Appendix D2 (cont 'd)

H matrix coefficients
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